R for Dummies


Joris Meys - 2012
    R is packed with powerful programming capabilities, but learning to use R in the real world can be overwhelming for even the most seasoned statisticians. This easy-to-follow guide explains how to use R for data processing and statistical analysis, and then, shows you how to present your data using compelling and informative graphics. You'll gain practical experience using R in a variety of settings and delve deeper into R's feature-rich toolset.Includes tips for the initial installation of RDemonstrates how to easily perform calculations on vectors, arrays, and lists of dataShows how to effectively visualize data using R's powerful graphics packagesGives pointers on how to find, install, and use add-on packages created by the R communityProvides tips on getting additional help from R mailing lists and websitesWhether you're just starting out with statistical analysis or are a procedural programming pro, "R For Dummies" is the book you need to get the most out of R.

The Theoretical Minimum: What You Need to Know to Start Doing Physics


Leonard Susskind - 2013
    In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Clean Code: A Handbook of Agile Software Craftsmanship


Robert C. Martin - 2007
    But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.

Quantum Computing for Everyone


Chris Bernhardt - 2019
    In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means.Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement--which, he says, is easier to describe mathematically than verbally--and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as "spooky action at a distance"); and introduces quantum cryptography. He recaps standard topics in classical computing--bits, gates, and logic--and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.

Statistical Methods for the Social Sciences


Alan Agresti - 1986
    No previous knowledge of statistics is assumed, and mathematical background is assumed to be minimal (lowest-level high-school algebra). This text may be used in a one or two course sequence. Such sequences are commonly required of social science graduate students in sociology, political science, and psychology. Students in geography, anthropology, journalism, and speech also are sometimes required to take at least one statistics course.

Elements of the Theory of Computation


Harry R. Lewis - 1981
    The authors are well-known for their clear presentation that makes the material accessible to a a broad audience and requires no special previous mathematical experience. KEY TOPICS: In this new edition, the authors incorporate a somewhat more informal, friendly writing style to present both classical and contemporary theories of computation. Algorithms, complexity analysis, and algorithmic ideas are introduced informally in Chapter 1, and are pursued throughout the book. Each section is followed by problems.

Div, Grad, Curl, and All That: An Informal Text on Vector Calculus


Harry M. Schey - 1973
    Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.

Purely Functional Data Structures


Chris Okasaki - 1996
    However, data structures for these languages do not always translate well to functional languages such as Standard ML, Haskell, or Scheme. This book describes data structures from the point of view of functional languages, with examples, and presents design techniques that allow programmers to develop their own functional data structures. The author includes both classical data structures, such as red-black trees and binomial queues, and a host of new data structures developed exclusively for functional languages. All source code is given in Standard ML and Haskell, and most of the programs are easily adaptable to other functional languages. This handy reference for professional programmers working with functional languages can also be used as a tutorial or for self-study.

Pro Git


Scott Chacon - 2009
    It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.

Machine Learning: An Algorithmic Perspective


Stephen Marsland - 2009
    The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."

Introduction to Networking: How the Internet Works


Charles Severance - 2015
     While very complex, the Internet operates on a few relatively simple concepts that anyone can understand. Networks and networked applications are embedded in our lives. Understanding how these technologies work is invaluable.  This book was written for everyone - no technical knowledge is required!While this book is not specifically about the Network+ or CCNA certifications, it as a way to give students interested in these certifications a starting point.

Matrix Computations


Gene H. Golub - 1983
    It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.

The Haskell Road to Logic, Maths and Programming


Kees Doets - 2004
    Haskell emerged in the last decade as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvellous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures.This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others.

Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.

Thinking in Systems: A Primer


Donella H. Meadows - 2008
    Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.