Book picks similar to
Mathematical Aspects of Classical and Celestial Mechanics by Vladimir I. Arnold
physics
mathematics
science
math
Linear Algebra Done Right
Sheldon Axler - 1995
The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.
How to Ace Calculus: The Streetwise Guide
Colin Conrad Adams - 1998
Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.
Quantum Mechanics: Concepts and Applications
Nouredine Zettili - 2001
It combines the essential elements of the theory with the practical applications. Containing many examples and problems with step-by-step solutions, this cleverly structured text assists the reader in mastering the machinery of quantum mechanics. * A comprehensive introduction to the subject * Includes over 65 solved examples integrated throughout the text * Includes over 154 fully solved multipart problems * Offers an indepth treatment of the practical mathematical tools of quantum mechanics * Accessible to teachers as well as students
Chaos: A Very Short Introduction
Leonard A. Smith - 2007
Even the simplest system of cause and effect can be subject to chaos, denying us accurate predictions of its behaviour, and sometimes giving rise to astonishing structures of large-scale order. Our growing understanding of Chaos Theory is having fascinating applications in the real world - from technology to global warming, politics, human behaviour, and even gambling on the stock market. Leonard Smith shows that we all have an intuitive understanding of chaotic systems. He uses accessible maths and physics (replacing complex equations with simple examples like pendulums, railway lines, and tossing coins) to explain the theory, and points to numerous examples in philosophy and literature (Edgar Allen Poe, Chang-Tzu, Arthur Conan Doyle) that illuminate the problems. The beauty of fractal patterns and their relation to chaos, as well as the history of chaos, and its uses in the real world and implications for the philosophy of science are all discussed in this Very Short Introduction.
Introductory Statistics
Prem S. Mann - 2006
The realistic content of its examples and exercises, the clarity and brevity of its presentation, and the soundness of its pedagogical approach have received the highest remarks from both students and instructors. Now this bestseller is available in a new 6th edition.
Pharmacotherapy
Joseph T. DiPiro - 1988
Now in its sixth edition, this classic text continues its long-standing tradition of offering unparalleled guidance in the development of pharmaceutical care plans. The book provides a unique process of thinking about pharmacotherapy the process which uses evidence-based approaches to the drug treatment of diseases. Features: *FREE Online Resource Center for professors and students - study materials, web chapters, questions and answers, and updates *NEW Key Concepts begin each chapter *Excellent use of algorithms, tables, and charts - provides clear recommendations *"Clinical Controversies" in the treatment sections of disease-oriented chapters
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Quantum Theory: A Very Short Introduction
John C. Polkinghorne - 2002
This book gives a lucid, exciting, and accessible account of the surprising and counterintuitive ideas that shape our understanding of the sub-atomic world. It does not disguise the problems of interpretation that still remain unsettled 75 years after the initial discoveries. The main text makes no use of equations, but there is a Mathematical Appendix for those desiring stronger fare. Uncertainty, probabilistic physics, complementarity, the problematic character of measurement, and decoherence are among the many topics discussed. This volume offers the reader access to one of the greatest discoveries in the history of physics and one of the outstanding intellectual achievements of the twentieth century.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
Steven H. Strogatz - 1994
The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.
Abstract Algebra
David S. Dummit - 1900
This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. * The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.
Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus
Michael Spivak - 1965
The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.
Algebraic Topology
Allen Hatcher - 2001
This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
Discrete-Event System Simulation
Jerry Banks - 1983
This text provides a basic treatment of discrete-event simulation, including the proper collection and analysis of data, the use of analytic techniques, verification and validation of models, and designing simulation experiments. It offers an up-to-date treatment of simulation of manufacturing and material handling systems, computer systems, and computer networks. Students and instructors will find a variety of resources at the associated website, www.bcnn.net, including simulation source code for download, additional exercises and solutions, web links and errata.
What Is Mathematics?: An Elementary Approach to Ideas and Methods
Richard Courant - 1941
Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.