The Cosmic Cocktail: Three Parts Dark Matter


Katherine Freese - 2014
    The rest is known as dark matter and dark energy, because their precise identities are unknown. "The Cosmic Cocktail" is the inside story of the epic quest to solve one of the most compelling enigmas of modern science--what is the universe made of?--told by one of today's foremost pioneers in the study of dark matter.Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the field, acclaimed theoretical physicist Katherine Freese recounts the hunt for dark matter, from the discoveries of visionary scientists like Fritz Zwicky--the Swiss astronomer who coined the term "dark matter" in 1933--to the deluge of data today from underground laboratories, satellites in space, and the Large Hadron Collider. Theorists contend that dark matter consists of fundamental particles known as WIMPs, or weakly interacting massive particles. Billions of them pass through our bodies every second without us even realizing it, yet their gravitational pull is capable of whirling stars and gas at breakneck speeds around the centers of galaxies, and bending light from distant bright objects. Freese describes the larger-than-life characters and clashing personalities behind the race to identify these elusive particles.Many cosmologists believe we are on the verge of solving the mystery. "The Cosmic Cocktail" provides the foundation needed to fully fathom this epochal moment in humankind's quest to understand the universe.

Introduction to Classical Mechanics: With Problems and Solutions


David Morin - 2007
    It also explores more advanced topics, such as normal modes, the Lagrangian method, gyroscopic motion, fictitious forces, 4-vectors, and general relativity. It contains more than 250 problems with detailed solutions so students can easily check their understanding of the topic. There are also over 350 unworked exercises which are ideal for homework assignments. Password protected solutions are available to instructors at www.cambridge.org/9780521876223. The vast number of problems alone makes it an ideal supplementary text for all levels of undergraduate physics courses in classical mechanics. Remarks are scattered throughout the text, discussing issues that are often glossed over in other textbooks, and it is thoroughly illustrated with more than 600 figures to help demonstrate key concepts.

Quantum Physics for Beginners in 90 Minutes without Math: All the Major Ideas of Quantum Mechanics, from Quanta to Entanglement, in Simple Language


Modern Science - 2017
    This behavior is very much different from what we humans are used to dealing with in our everyday lives, so naturally this subject is quite hard to comprehend for many. We believed that the best way to introduce the subject reliably is to start at the beginning, presenting the observations, thoughts and conclusions of each of the world’s greatest physicists through their eyes, one at a time. In this way we hope that the reader may take an enjoyable journey through the strange truths of quantum theory and understand why the conclusions of these great minds are what they are. This book starts with the most general view of the world and gradually leads readers to those new, unbelievable but real facts about the very nature of our universe.

Physics for Scientists and Engineers


Paul Allen Tipler - 1981
    Now in its fourth edition, the work has been extensively revised, with entirely new artwork, updated examples and new pedagogical features. An interactive CD-ROM with worked examples is included. Alternatively, the material on from the CD-ROM can be down-loaded from a website (see supplements section). Twentieth-century developments such as quantum mechanics are introduced early on, so that students can appreciate their importance and see how they fit into the bigger picture.

Bang!: The Complete History of the Universe


Brian May - 2006
    He's certainly been thinking about it lately. May, a freshly minted astrophysics Ph.D., joins forces with legendary astronomer Patrick Moore and astrophysicist Chris Lintott in Bang! to consider the history of the universe from the Big Bang to Heat Death.Space, time, and matter were birthed 13.7 billion years ago and will continue on longer than we are able to comprehend. Infinitesimally small at first, the Universe is immense and ever expanding. Bang! explains how it all started, takes you on a tour of what is known about the evolution of the Universe, and posits how the end of time will come about.This fascinating book includes photographs, short biographies of key figures, an at-a-glance timeline, a glossary of terms, and suggested resources for further exploration.Based on the work of history’s most brilliant scientific minds, this amazing story features clear, straightforward discussions of the most perplexing and compelling aspects of existence—from the formation of stars, planets, and other galactic bodies to black holes, quasars, anti-matter, and dark matter to the emergence of life and the possibility that it could exist elsewhere.Pick up a copy of Bang! It will, it will rock you.

Ordinary Differential Equations


Morris Tenenbaum - 1985
    Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

The Big Questions: Tackling the Problems of Philosophy with Ideas from Mathematics, Economics and Physics


Steven E. Landsburg - 2009
    Stimulating, illuminating, and always surprising, The Big Questions challenges readers to re-evaluate their most fundamental beliefs and reveals the relationship between the loftiest philosophical quests and our everyday lives.

Big Bang: The Origin of the Universe


Simon Singh - 2004
    In this amazingly comprehensible history of the universe, Simon Singh decodes the mystery behind the Big Bang theory, lading us through the development of one of the most extraordinary, important, and awe-inspiring theories in science.

How to Make an Apple Pie from Scratch: In Search of the Recipe for Our Universe


Harry Cliff - 2021
    He ventures to the largest underground research facility in the world, deep beneath Italy's Gran Sasso mountains, where scientists gaze into the heart of the Sun using the most elusive of particles, the ghostly neutrino. He visits CERN in Switzerland to explore the Antimatter Factory, where the stuff of science fiction is manufactured daily (and we're close to knowing whether it falls up). And he reveals what the latest data from the Large Hadron Collider may be telling us about the fundamental nature of matter.Along the way, Cliff illuminates the history of physics, chemistry, and astronomy that brought us to our present understanding--and misunderstandings--of the world, while offering readers a front-row seat to one of the most dramatic intellectual journeys human beings have ever embarked on.A transfixing deep dive into origins of our world, How to Make an Apple Pie from Scratch examines not just the makeup of our universe, but the awe-inspiring, improbable fact that it exists at all.

Turing and the Computer


Paul Strathern - 1997
    Without a doubt, the development of the computer was a massive leap forward in humankind's progress and will stand as one of the twentieth century's greatest achievements. But how many of us know how it really works? "Turing And The Computer" offers a brilliant encapsulation of the groundwork that led to the invention of the computer as we know it, and an absorbing account of the man who helped develop it, only to be largely forgotten after his death. Eccentric and principled, Turing would lay aside a brilliant career in mathematics to serve his country by breaking German codes during the Second World War. Openly homosexual, he would later be put on trial on indecency charges and forced to undergo hormone treatments that wrecked his body and his spirit. But the modern machine he helped create lives on.Concise and thoroughly compelling, "Turing And The Computer" is for all those curious about the philosophy and mechanics behind the now indispensable computer, and for anyone awed by the spark of invention that inspires its birth.

Elements of Partial Differential Equations


Ian N. Sneddon - 2006
    It emphasizes forms suitable for students and researchers whose interest lies in solving equations rather than in general theory. Solutions to odd-numbered problems appear at the end. 1957 edition.

Just Six Numbers: The Deep Forces That Shape the Universe


Martin J. Rees - 1999
    There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think


David Lindley - 1996
    Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.