Multiple View Geometry in Computer Vision


Richard Hartley - 2000
    This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9

Introduction to Linear Algebra


Gilbert Strang - 1993
    Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.

Gamma: Exploring Euler's Constant


Julian Havil - 2003
    Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"

Physics for the Rest of Us


Roger S. Jones - 1992
    Offers a humanistic and cultural view of modern physics.

Semiconductor Device Fundamentals


Robert F. Pierret - 1995
    Problems are designed to progressively enhance MATLAB-use proficiency, so students need not be familiar with MATLAB at the start of your course. Program scripts that are answers to exercises in the text are available at no charge in electronic form (see Teaching Resources below). *Supplement and Review Mini-Chapters after each of the text's three parts contain an extensive review list of terms, test-like problem sets with answers, and detailed suggestions on supplemental reading to reinforce students' learning and help them prepare for exams. *Read-Only Chapters, strategically placed to provide a change of pace during the course, provide informative, yet enjoyable reading for students. *Measurement Details and Results samples offer students a realistic perspective on the seldom-perfect nature of device characteristics, contrary to the way they are often represented in introductory texts. Content Highlig

Introduction to Mathematical Statistics


Robert V. Hogg - 1962
    Designed for two-semester, beginning graduate courses in Mathematical Statistics, and for senior undergraduate Mathematics, Statistics, and Actuarial Science majors, this text retains its ongoing features and continues to provide students with background material.

Understanding Analysis


Stephen Abbott - 2000
    The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.

Introductory Quantum Mechanics


Richard L. Liboff - 1980
    Included in this edition is a new chapter on the revolutionary topic of quantum computing.

Statistics Done Wrong: The Woefully Complete Guide


Alex Reinhart - 2013
    Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us


Noson S. Yanofsky - 2013
    This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.

A History of π


Petr Beckmann - 1970
    Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations


Richard Elwes - 2010
    Distilled into 1001 mini-essays arranged thematically, this unique book moves steadily from the basics through to the most advanced areas of math, making it the ideal guide for both the beginner and the math wiz.The book covers all of the fundamental mathematical disciplines:Geometry Numbers Analysis Logic Algebra Probability and statistics Applied mathematics Discrete mathematics Games and recreational mathematics Philosophy and metamathematicsExpert mathematician Richard Elwes explains difficult concepts in the simplest language with a minimum of jargon. Along the way he reveals such mathematical magic as how to count to 1023 using just 10 fingers and how to make an unbreakable code.Enlightening and entertaining, Mathematics 1001 makes the language of math come alive.

A Primer of Ecological Statistics


Nicholas J. Gotelli - 2004
    The book emphasizes a general introduction to probability theory and provides a detailed discussion of specific designs and analyses that are typically encountered in ecology and environmental science. Appropriate for use as either a stand-alone or supplementary text for upper-division undergraduate or graduate courses in ecological and environmental statistics, ecology, environmental science, environmental studies, or experimental design, the Primer also serves as a resource for environmental professionals who need to use and interpret statistics daily but have little or no formal training in the subject.