Best of
Mathematics
1962
Elementary Differential Equations
Earl D. Rainville - 1962
Each chapter includes many illustrative examples to assist the reader. The book emphasizes methods for finding solutions to differential equations. It provides many abundant exercises, applications, and solved examples with careful attention given to readability. Elementary Differential Equations includes a thorough treatment of power series techniques. In addition, the book presents a classical treatment of several physical problems to show how Fourier series become involved in the solution of those problems. The eighth edition of Elementary Differential Equations has been revised to include a new supplement in many chapters that provides suggestions and exercises for using a computer to assist in the understanding of the material in the chapter. It also now provides an introduction to the phase plane and to different types of phase portraits. A valuable reference book for readers interested in exploring the technological and other applications of differential equations.
Calculus, Volume 2: Multi-Variable Calculus and Linear Algebra with Applications
Tom M. Apostol - 1962
Integration is treated before differentiation -- this is a departure from most modern texts, but it is historically correct, and it is the best way to establish the true connection between the integral and the derivative. Proofs of all the important theorems are given, generally preceded by geometric or intuitive discussion. This
Second Edition
introduces the mean-value theorems and their applications earlier in the text, incorporates a treatment of linear algebra, and contains many new and easier exercises. As in the first edition, an interesting historical introduction precedes each important new concept.
Quantum Electrodynamics
Richard P. Feynman - 1962
Designed for the student of experimental physics who does not intend to take more advanced graduate courses in theoretical physics, the material consists of notes on the third of a three-semester course given at the California Institute of Technology.
The Foundations of Geometry
David Hilbert - 1962
An Unabridged Printing, To Include Updated Typeface - Chapters: The Five Groups Of Axioms - The Compatibility And Mutual Independence Of The Axioms - The Theory Of Proportion - The Theory Of Plane Areas - Desargue's Theorem - Pascal's Theorem - Geometrical Constructions Based Upon The Axioms I-V - Conclusion - Appendix
Group Theory and Its Application to Physical Problems
Morton Hamermesh - 1962
. . well organized, well written and very clear throughout." — Mathematical ReviewsThis excellent text, long considered one of the best-written, most skillful expositions of group theory and its physical applications, is directed primarily to advanced undergraduate and graduate students in physics, especially quantum physics. No knowledge of group theory is assumed, but the reader is expected to be familiar with quantum mechanics. And while much of the book concerns theory, readers will nevertheless find a large number of physical applications in the fields of crystallography, molecular theory, and atomic and nuclear physics.The first seven chapters of the book are concerned with finite groups, focusing on the central role of the symmetric group. This section concludes with a chapter dealing with the problem of determining group characters, as it discusses Young tableaux, Yamanouchi symbols, and the method of Hund. The remaining five chapters discuss continuous groups, particularly Lie groups, with the final chapter devoted to the ray representation of Lie groups. The author, Professor Emeritus of Physics at the University of Minnesota, has included a generous selection of problems. They are inserted throughout the text at the place where they naturally arise, making the book ideal for self-study as well as for classroom assignment.."A very welcome addition to [the] literature. . . . I would warmly recommend the book to all serious students of Group Theory as applied to Physics." — Contemporary Physics.
Geometric Transformations I
Isaak Moiseevich Yaglom - 1962
This book introduces the reader to a completely different way of looking at familiar geometrical facts. It is concerned with transformations of the plane that do not alter the shapes and sizes of geometric figures. Such transformations play a fundamental role in the group theoretic approach to geometry. The treatment is direct and simple. The reader is introduced to new ideas and then is urged to solve problems using these ideas. The problems form an essential part of this book and the solutions are given in detail in the second half of the book.
Science and Information Theory
Léon Brillouin - 1962
Topics include the principles of coding, coding problems and solutions, the analysis of signals, a summary of thermodynamics, thermal agitation and Brownian motion, plus an examination of Maxwell's demon. 81 figures. 14 tables.
Fourier Analysis on Groups
Walter Rudin - 1962
Rudin's book, published in 1962, was the first to give a systematic account of these developments and has come to be regarded as a classic in the field. The basic facts concerning Fourier analysis and the structure of LCA groups are proved in the opening chapters, in order to make the treatment relatively self-contained.