Group Theory in the Bedroom, and Other Mathematical Diversions


Brian Hayes - 2008
    (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.

A Concise History of Mathematics


Dirk Jan Struik - 1948
    Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.

The Large Scale Structure of Space-Time


Stephen Hawking - 1973
    These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.

The Calculus Direct


John Weiss - 2009
    The calculus is not a hard subject and I prove this through an easy to read and obvious approach spanning only 100 pages. I have written this book with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.Show more Show less

Fundamentals of Thermodynamics


Richard E. Sonntag - 2002
    

Mathematics for Class XII(CBSE)


R.D. Sharma
    

Robbins and Cotran Pathologic Basis of Disease [with Student Consult Online Access]


Vinay Kumar - 2009
    A who's who of pathology experts delivers the most dependable, current, and complete coverage of today's essential pathology knowledge. At the same time, masterful editing and a practical organization make mastering every concept remarkably easy. Online access via Student Consult includes self-assessment and review questions, interactive case studies, downloadable images, videos, and a virtual microscope that lets you view slides at different magnifications. The result remains the ideal source for an optimal understanding of pathology. Offers the most authoritative and comprehensive, yet readable coverage available in any pathology textbook, making it ideal for USMLE or specialty board preparation as well as for course work. Includes access to the complete contents online via Student Consult, along with self-assessment and review questions, over 100 interactive clinical case studies, videos, and a virtual microscope that lets users view slides at different magnifications.Delivers a state-of-the-art understanding of the pathologic basis of disease through completely updated coverage, including the latest cellular and molecular biology.Demonstrates every concept visually with over 1,600 full-color photomicrographs and conceptual diagrams - many revised for even better quality.Facilitates learning with an outstanding full-color, highly user-friendly design.

Principles of Statistics


M.G. Bulmer - 1979
    There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again for the classroom or for self-study.Principles of Statistics was created primarily for the student of natural sciences, the social scientist, the undergraduate mathematics student, or anyone familiar with the basics of mathematical language. It assumes no previous knowledge of statistics or probability; nor is extensive mathematical knowledge necessary beyond a familiarity with the fundamentals of differential and integral calculus. (The calculus is used primarily for ease of notation; skill in the techniques of integration is not necessary in order to understand the text.)Professor Bulmer devotes the first chapters to a concise, admirably clear description of basic terminology and fundamental statistical theory: abstract concepts of probability and their applications in dice games, Mendelian heredity, etc.; definitions and examples of discrete and continuous random variables; multivariate distributions and the descriptive tools used to delineate them; expected values; etc. The book then moves quickly to more advanced levels, as Professor Bulmer describes important distributions (binomial, Poisson, exponential, normal, etc.), tests of significance, statistical inference, point estimation, regression, and correlation. Dozens of exercises and problems appear at the end of various chapters, with answers provided at the back of the book. Also included are a number of statistical tables and selected references.

Real and Complex Analysis


Walter Rudin - 1970
    The basic techniques and theorems of analysis are presented in such a way that the intimate connections between its various branches are strongly emphasized. The traditionally separate subjects of 'real analysis' and 'complex analysis' are thus united in one volume. Some of the basic ideas from functional analysis are also included. This is the only book to take this unique approach. The third edition includes a new chapter on differentiation. Proofs of theorems presented in the book are concise and complete and many challenging exercises appear at the end of each chapter. The book is arranged so that each chapter builds upon the other, giving students a gradual understanding of the subject.This text is part of the Walter Rudin Student Series in Advanced Mathematics.

On Formally Undecidable Propositions of Principia Mathematica and Related Systems


Kurt Gödel - 1992
    Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.

Schaum's Outline of Calculus


Frank Ayres Jr. - 1990
    They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators..

Linear Algebra


Stephen H. Friedberg - 1979
     This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.

A Student's Guide to Maxwell's Equations


Daniel Fleisch - 2007
    In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.

new pattern Physics


D.C. Pandey - 2014
    Not mere luck but mastery over the concepts is what contributes to the success. The revised edition of this specialized book by Arihant is a master practice book of Physics designed according to the examination pattern of JEE Main and Advanced containing more than 8000 questions helping the students in building their confidence for facing the JEE Exams. This master book has been divided into 23 chapters namely Laws of Motion, Rotation, Gravitation, Circular Motion, Wave Optics, Ray Optics, Electrostatics, Current Electricity, Communication System, Modern Physics, Waves, Kinematics 1, Electromagnetic Waves, Properties of Matter, etc. This is a Master Practice Book for Physics consisting of more than 6000 innovative objective problems like MCQs with Single Correct Option, Multiple Correct Options, Assertion-Reason, Linked Comprehension Based, Matrix Matching and Single Integer Answer Type, etc. The different types of objective questions sharpen the comprehension and analytical abilities in the students. Hints and step-by-step explanatory solutions have been provided for all the questions at the end of each chapter. A special section of Previous Yearsandrsquo; IIT JEE Questions with detailed solutions is provided at the end of the book. The book aims to make students learn in depth about the various concepts and subjects covered under the syllabi of physics for JEE Mains and Advanced Exam. As the book has been designed on the New Pattern of JEE Main andamp; Advanced and contains a large collection of new pattern based physics objective questions which may be asked in the upcoming exams, it for sure will help the aspirants climb the ladder of success in the upcoming JEE Main andamp; Advanced. Content 1.Experimental Skills and General Physics 2.Kinematics 3.Kinematics 4.Laws of Motion 5.Work, Power and E

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.