Book picks similar to
Linear Differential Operators by Cornelius Lanczos
math
mathematics
mathematical-me
nonfiction
Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)
Michael H. Kutner - 2003
Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.
The Book of Numbers: The Secret of Numbers and How They Changed the World
Peter J. Bentley - 2008
Indeed, numbers are part of every discipline in the sciences and the arts.With 350 illustrations, including diagrams, photographs and computer imagery, the book chronicles the centuries-long search for the meaning of numbers by famous and lesser-known mathematicians, and explains the puzzling aspects of the mathematical world. Topics include:The earliest ideas of numbers and counting Patterns, logic, calculating Natural, perfect, amicable and prime numbers Numerology, the power of numbers, superstition The computer, the Enigma Code Infinity, the speed of light, relativity Complex numbers The Big Bang and Chaos theories The Philosopher's Stone. The Book of Numbers shows enthusiastically that numbers are neither boring nor dull but rather involve intriguing connections, rivalries, secret documents and even mysterious deaths.
Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge
William Poundstone - 1988
This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.
Math Through the Ages: A Gentle History for Teachers and Others
William P. Berlinghoff - 2002
Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."
Physics, Volume 1
Robert Resnick - 1966
The Fourth Edition of volumes 1 and 2 is concerned with mechanics and E&M/Optics. New features include: expanded coverage of classic physics topics, substantial increases in the number of in-text examples which reinforce text exposition, the latest pedagogical and technical advances in the field, numerical analysis, computer-generated graphics, computer projects and much more.
Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers
Joseph Mazur - 2014
What did mathematicians rely on for their work before then? And how did mathematical notations evolve into what we know today? In Enlightening Symbols, popular math writer Joseph Mazur explains the fascinating history behind the development of our mathematical notation system. He shows how symbols were used initially, how one symbol replaced another over time, and how written math was conveyed before and after symbols became widely adopted.Traversing mathematical history and the foundations of numerals in different cultures, Mazur looks at how historians have disagreed over the origins of the numerical system for the past two centuries. He follows the transfigurations of algebra from a rhetorical style to a symbolic one, demonstrating that most algebra before the sixteenth century was written in prose or in verse employing the written names of numerals. Mazur also investigates the subconscious and psychological effects that mathematical symbols have had on mathematical thought, moods, meaning, communication, and comprehension. He considers how these symbols influence us (through similarity, association, identity, resemblance, and repeated imagery), how they lead to new ideas by subconscious associations, how they make connections between experience and the unknown, and how they contribute to the communication of basic mathematics.From words to abbreviations to symbols, this book shows how math evolved to the familiar forms we use today.
Saving My Knees: How I Proved My Doctors Wrong and Beat Chronic Knee Pain
Richard Bedard - 2011
Richard Bedard was a journalist in his mid-40s, living abroad, when he was diagnosed with patellofemoral pain syndrome, or chondromalacia patella. His burning joints made his life so miserable that he fantasized about hacking off his kneecaps. Four doctors failed to help; one said he would never get better. His physical therapist finally gave up too.Unable to sit normally, he quit his job. Unemployed and desperate, he launched a year-long, round-the-clock experiment to save his knees. He read from scores of clinical studies, medical textbooks, health newsletters. What he discovered left him stunned. There was a familiar story about what patellofemoral pain syndrome was and how to treat it: The advice to focus on strengthening the quads. To stretch. To take glucosamine. To forget about cartilage healing, because that never happened.And that story was completely wrong.Armed with this knowledge, he fashioned a plan to get better. Within two years, he fully recovered. This compelling story chronicles a long journey of healing and discovery. It shows that a patient’s true ally isn’t simply hope, but informed hope.
Quantum Computing Since Democritus
Scott Aaronson - 2013
Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.
Essential Poker Math: Fundamental No Limit Hold'em Mathematics You Need To Know
Alton Hardin - 2015
I'm here to tell you it is not. In fact, fundamental poker math is very easy to learn. More importantly, it can yield you a lot more profits at the poker table. Without using simple math at the poker table, you are simply playing a guessing game. Use Simple Math at the Poker Table and Increase You Winnings In this book I will teach you how to use simple arithmetic at the poker table to gain a huge skill advantage over your opponents that will allow you to win more and lose less. Poker players that don't use math are simply guessing and you'll learn to no longer guess and know the right mathematical move at the poker table. These simple mathematical concepts I will be teaching you will drastically help improve your poker game and allow you to make the most profitable decisions at the poker. Contents and Overview First you will be introduced to some fundamental overarching poker concepts that apply to poker mathematics. Then we will begin our journey into poker mathematics where you will learn about probabilities and odds, pot odds and implied odds, pot equity, and expected value. You will then learn how to quickly estimate your equity at the poker table using the Rule of 2 & 4. Moreover, you'll learn the steps involved in determining if calling with a drawing hand is profitable or not. We will also cover how to size your bets with the best hand and teach you how often bluffs and hero calls need to work to be profitable. Lastly, we will show you how to perform EV calculations and better understand card combinations. Effectively Understand and Utilize Essential Poker Math Develop a keen understanding of Probability and Odds Learn to quickly calculate Pot Odds & Implied Odds at the poker table Effectively use Pot Equity & The Rule of 2 & 4 to Determine the correct poker play Understand how to use Expected Value (EV) both on and off the table to analyze your plays Learn the important math behind Bluffs & Hero Calls to give you a skill advantage over your opponent Learn Card Combinations to further enhance your card reading abilities And Many More Amazing Topics… What You Will Get out of This Book Suitable for both beginning and experienced poker players alike you'll learn many essential fundamental poker mathematical concepts that will help you drastically improve your poker game. After reading this book, you will have mastered fundamental No Limit Holdem mathematics. You will have gained a huge skill advantage over your opponents and you will be able to quickly and effectively use math at the poker table to make are always the most profitable move. Most importantly, you will become a much better and profitable poker player! So what are you waiting for? Purchase this book today to start learning how to advance your poker game with simple poker math! Alton Hardin is the founder of MicroGrinder.com, a free micro stakes poker website that is dedicated to helping micro stakes poker players improve their poker game by offering a wide array of free and low-cost resources including poker courses, poker t
Numerical Linear Algebra
Lloyd N. Trefethen - 1997
The clarity and eloquence of the presentation make it popular with teachers and students alike. The text aims to expand the reader's view of the field and to present standard material in a novel way. All of the most important topics in the field are covered with a fresh perspective, including iterative methods for systems of equations and eigenvalue problems and the underlying principles of conditioning and stability. Presentation is in the form of 40 lectures, which each focus on one or two central ideas. The unity between topics is emphasized throughout, with no risk of getting lost in details and technicalities. The book breaks with tradition by beginning with the QR factorization - an important and fresh idea for students, and the thread that connects most of the algorithms of numerical linear algebra.
Concepts of Modern Mathematics
Ian Stewart - 1975
Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.
History of Astronomy
George Forbes - 1909
Purchasers are entitled to a free trial membership in the General Books Club where they can select from more than a million books without charge. Subjects: Astronomy; History / General; Juvenile Nonfiction / Science
Introduction to Topology
Bert Mendelson - 1975
It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser
Jason Rosenhouse - 2009
Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.