An Introduction to Probability Theory and Its Applications, Volume 1


William Feller - 1968
    Beginning with the background and very nature of probability theory, the book then proceeds through sample spaces, combinatorial analysis, fluctuations in coin tossing and random walks, the combination of events, types of distributions, Markov chains, stochastic processes, and more. The book's comprehensive approach provides a complete view of theory along with enlightening examples along the way.

Schaum's Outline of Probability and Statistics


Murray R. Spiegel - 1975
    Its big-picture, calculus-based approach makes it an especially authoriatative reference for engineering and science majors. Now thoroughly update, this second edition includes vital new coverage of order statistics, best critical regions, likelihood ratio tests, and other key topics.

Stochastic Calculus for Finance I: The Binomial Asset Pricing Model


Steven E. Shreve - 2004
    Developed for the professional Master's program in Computational Finance at Carnegie Mellon, the leading financial engineering program in the U.S.Has been tested in the classroom and revised over a period of several yearsExercises conclude every chapter; some of these extend the theory while others are drawn from practical problems in quantitative finance

Introduction to Probability


Joseph K. Blitzstein - 2014
    The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo MCMC. Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Probability, Random Variables and Stochastic Processes with Errata Sheet


Athanasios Papoulis - 2001
    Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material--this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics.

Introduction to Probability


Dimitri P. Bertsekas - 2002
    This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

Bayes Theorem Examples: An Intuitive Guide


Scott Hartshorn - 2016
    Essentially, you are estimating a probability, but then updating that estimate based on other things that you know. This book is designed to give you an intuitive understanding of how to use Bayes Theorem. It starts with the definition of what Bayes Theorem is, but the focus of the book is on providing examples that you can follow and duplicate. Most of the examples are calculated in Excel, which is useful for updating probability if you have dozens or hundreds of data points to roll in.

Probability: A Very Short Introduction


John Haigh - 2012
    It requires, in short, an understanding of probability. In this Very Short Introduction, John Haigh introduces the ideas of probability--and the different philosophical approaches to probability--and gives a brief account of the history of development of probability theory, from Galileo and Pascal to Bayes, Laplace, Poisson, and Markov. He describes the basic probability distributions and discusses a wide range of applications in science, economics, and a variety of other contexts such as games and betting. He concludes with an intriguing discussion of coincidences and some curious paradoxes.

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

The Drunkard's Walk: How Randomness Rules Our Lives


Leonard Mlodinow - 2008
    From the classroom to the courtroom and from financial markets to supermarkets, Mlodinow's intriguing and illuminating look at how randomness, chance, and probability affect our daily lives will intrigue, awe, and inspire.

Probability And Statistics For Engineers And Scientists


Ronald E. Walpole - 1978
     Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.

Probability and Statistics


Morris H. DeGroot - 1975
    Other new features include a chapter on simulation, a section on Gibbs sampling, what you should know boxes at the end of each chapter, and remarks to highlight difficult concepts.

Innumeracy: Mathematical Illiteracy and Its Consequences


John Allen Paulos - 1988
    Dozens of examples in innumeracy show us how it affects not only personal economics and travel plans, but explains mis-chosen mates, inappropriate drug-testing, and the allure of pseudo-science.

The Half-life of Facts: Why Everything We Know Has an Expiration Date


Samuel Arbesman - 2012
    Smoking has gone from doctor recommended to deadly. We used to think the Earth was the center of the universe and that Pluto was a planet. For decades, we were convinced that the brontosaurus was a real dinosaur. In short, what we know about the world is constantly changing.   But it turns out there’s an order to the state of knowledge, an explanation for how we know what we know. Samuel Arbesman is an expert in the field of scientometrics—literally the science of science. Knowl­edge in most fields evolves systematically and predict­ably, and this evolution unfolds in a fascinating way that can have a powerful impact on our lives.   Doctors with a rough idea of when their knowl­edge is likely to expire can be better equipped to keep up with the latest research. Companies and govern­ments that understand how long new discoveries take to develop can improve decisions about allocating resources. And by tracing how and when language changes, each of us can better bridge gen­erational gaps in slang and dialect.   Just as we know that a chunk of uranium can break down in a measurable amount of time—a radioactive half-life—so too any given field’s change in knowledge can be measured concretely. We can know when facts in aggregate are obsolete, the rate at which new facts are created, and even how facts spread.   Arbesman takes us through a wide variety of fields, including those that change quickly, over the course of a few years, or over the span of centuries. He shows that much of what we know consists of “mesofacts”—facts that change at a middle timescale, often over a single human lifetime. Throughout, he of­fers intriguing examples about the face of knowledge: what English majors can learn from a statistical analysis of The Canterbury Tales, why it’s so hard to measure a mountain, and why so many parents still tell kids to eat their spinach because it’s rich in iron.   The Half-life of Facts is a riveting journey into the counterintuitive fabric of knowledge. It can help us find new ways to measure the world while accepting the limits of how much we can know with certainty.