Effective C#: 50 Specific Ways to Improve Your C#


Bill Wagner - 2004
    In a very short amount of time, he is able to present an issue, fix it and conclude it; each chapter is tight, succinct, and to the point." --Josh Holmes, Independent Contractor "The book provides a good introduction to the C# language elements from a pragmatic point of view, identifying best practices along the way, and following a clear and logical progression from the basic syntax to creating components to improving your code writing skills. Since each topic is covered in short entries, it is very easy to read and you'll quickly realize the benefits of the book." --Tomas Restrepo, Microsoft MVP "The book covers the basics well, especially with respect to the decisions needed when deriving classes from System.Object. It is easy to read with examples that are clear, concise and solid. I think it will bring good value to most readers." --Rob Steel, Central Region Integration COE & Lead Architect, Microsoft "Effective C# provides the C# developer with the tools they need to rapidly grow their experience in Visual C# 2003 while also providing insight into the many improvements to the language that will be hitting a desktop near you in the form of Visual C# 2005." --Doug Holland, Precision Objects "Part of the point of the .NET Framework--and the C# Language, in particular--is to let the developer focus solving customer problems and deliver product, rather than spending hours (or even weeks) writing plumbing code. Bill Wagner's Effective C#, not only shows you what's going on behind the scenes, but shows you how to take advantage of particular C# code constructs. Written in a dispassionate style that focuses on the facts--and just the facts--of writing effective C# code, Wagner's book drills down into practices that will let you write C# applications and components that are easier to maintain as well as faster to run. I'm recommending Effective C# to all students of my .NET BootCamp and other C#-related courses." --Richard Hale Shaw, www.RichardHaleShawGroup.com C#'s resemblances to C++, Java, and C make it easier to learn, but there's a downside: C# programmers often continue to use older techniques when far better alternatives are available. In Effective C#, respected .NET expert Bill Wagner identifies fifty ways you can start leveraging the full power of C# in order to write faster, more efficient, and more reliable software. Effective C# follows the format that made Effective C++ (Addison-Wesley, 1998) and Effective Java (Addison-Wesley, 2001) indispensable to hundreds of thousands of developers: clear, practical explanations, expert tips, and plenty of realistic code examples. Drawing on his unsurpassed C# experience, Wagner addresses everything from value types to assemblies, exceptions to reflection. Along the way, he shows exactly how to avoid dozens of common C# performance and reliability pitfalls. You'll learn how to: Use both types of C# constants for efficiency and maintainability, see item 2 Use immutable data types to eliminate unnecessary error checking, see item 7 Avoid the C# function that'll practically always get you in trouble, see item 10 Minimize garbage collection, boxing, and unboxing, see items 16 and 17

Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software


Scott Rosenberg - 2007
    Along the way, we encounter black holes, turtles, snakes, dragons, axe-sharpening, and yak-shaving—and take a guided tour through the theories and methods, both brilliant and misguided, that litter the history of software development, from the famous ‘mythical man-month’ to Extreme Programming. Not just for technophiles but for anyone captivated by the drama of invention, Dreaming in Code offers a window into both the information age and the workings of the human mind.

Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement


Eric Redmond - 2012
    As a modern application developer you need to understand the emerging field of data management, both RDBMS and NoSQL. Seven Databases in Seven Weeks takes you on a tour of some of the hottest open source databases today. In the tradition of Bruce A. Tate's Seven Languages in Seven Weeks, this book goes beyond your basic tutorial to explore the essential concepts at the core each technology. Redis, Neo4J, CouchDB, MongoDB, HBase, Riak and Postgres. With each database, you'll tackle a real-world data problem that highlights the concepts and features that make it shine. You'll explore the five data models employed by these databases-relational, key/value, columnar, document and graph-and which kinds of problems are best suited to each. You'll learn how MongoDB and CouchDB are strikingly different, and discover the Dynamo heritage at the heart of Riak. Make your applications faster with Redis and more connected with Neo4J. Use MapReduce to solve Big Data problems. Build clusters of servers using scalable services like Amazon's Elastic Compute Cloud (EC2). Discover the CAP theorem and its implications for your distributed data. Understand the tradeoffs between consistency and availability, and when you can use them to your advantage. Use multiple databases in concert to create a platform that's more than the sum of its parts, or find one that meets all your needs at once.Seven Databases in Seven Weeks will take you on a deep dive into each of the databases, their strengths and weaknesses, and how to choose the ones that fit your needs.What You Need: To get the most of of this book you'll have to follow along, and that means you'll need a *nix shell (Mac OSX or Linux preferred, Windows users will need Cygwin), and Java 6 (or greater) and Ruby 1.8.7 (or greater). Each chapter will list the downloads required for that database.

Cracking the Coding Interview: 150 Programming Questions and Solutions


Gayle Laakmann McDowell - 2008
    This is a deeply technical book and focuses on the software engineering skills to ace your interview. The book is over 500 pages and includes 150 programming interview questions and answers, as well as other advice.The full list of topics are as follows:The Interview ProcessThis section offers an overview on questions are selected and how you will be evaluated. What happens when you get a question wrong? When should you start preparing, and how? What language should you use? All these questions and more are answered.Behind the ScenesLearn what happens behind the scenes during your interview, how decisions really get made, who you interview with, and what they ask you. Companies covered include Google, Amazon, Yahoo, Microsoft, Apple and Facebook.Special SituationsThis section explains the process for experience candidates, Program Managers, Dev Managers, Testers / SDETs, and more. Learn what your interviewers are looking for and how much code you need to know.Before the InterviewIn order to ace the interview, you first need to get an interview. This section describes what a software engineer's resume should look like and what you should be doing well before your interview.Behavioral PreparationAlthough most of a software engineering interview will be technical, behavioral questions matter too. This section covers how to prepare for behavioral questions and how to give strong, structured responses.Technical Questions (+ 5 Algorithm Approaches)This section covers how to prepare for technical questions (without wasting your time) and teaches actionable ways to solve the trickiest algorithm problems. It also teaches you what exactly "good coding" is when it comes to an interview.150 Programming Questions and AnswersThis section forms the bulk of the book. Each section opens with a discussion of the core knowledge and strategies to tackle this type of question, diving into exactly how you break down and solve it. Topics covered include• Arrays and Strings• Linked Lists• Stacks and Queues• Trees and Graphs• Bit Manipulation• Brain Teasers• Mathematics and Probability• Object-Oriented Design• Recursion and Dynamic Programming• Sorting and Searching• Scalability and Memory Limits• Testing• C and C++• Java• Databases• Threads and LocksFor the widest degree of readability, the solutions are almost entirely written with Java (with the exception of C / C++ questions). A link is provided with the book so that you can download, compile, and play with the solutions yourself.Changes from the Fourth Edition: The fifth edition includes over 200 pages of new content, bringing the book from 300 pages to over 500 pages. Major revisions were done to almost every solution, including a number of alternate solutions added. The introductory chapters were massively expanded, as were the opening of each of the chapters under Technical Questions. In addition, 24 new questions were added.Cracking the Coding Interview, Fifth Edition is the most expansive, detailed guide on how to ace your software development / programming interviews.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

The Imposter's Handbook


Rob Conery - 2016
    New languages, new frameworks, new ways of doing things - a constant struggle just to stay current in the industry. This left no time to learn the foundational concepts and skills that come with a degree in Computer Science.

Pragmatic Thinking and Learning: Refactor Your Wetware


Andy Hunt - 2008
    Not in an editor, IDE, or design tool. You're well educated on how to work with software and hardware, but what about wetware--our own brains? Learning new skills and new technology is critical to your career, and it's all in your head. In this book by Andy Hunt, you'll learn how our brains are wired, and how to take advantage of your brain's architecture. You'll learn new tricks and tips to learn more, faster, and retain more of what you learn. You need a pragmatic approach to thinking and learning. You need to Refactor Your Wetware. Programmers have to learn constantly; not just the stereotypical new technologies, but also the problem domain of the application, the whims of the user community, the quirks of your teammates, the shifting sands of the industry, and the evolving characteristics of the project itself as it is built. We'll journey together through bits of cognitive and neuroscience, learning and behavioral theory. You'll see some surprising aspects of how our brains work, and how you can take advantage of the system to improve your own learning and thinking skills.In this book you'll learn how to:Use the Dreyfus Model of Skill Acquisition to become more expertLeverage the architecture of the brain to strengthen different thinking modesAvoid common "known bugs" in your mindLearn more deliberately and more effectivelyManage knowledge more efficientlyPrinted in full color.

Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions


Gregor Hohpe - 2003
    The authors also include examples covering a variety of different integration technologies, such as JMS, MSMQ, TIBCO ActiveEnterprise, Microsoft BizTalk, SOAP, and XSL. A case study describing a bond trading system illustrates the patterns in practice, and the book offers a look at emerging standards, as well as insights into what the future of enterprise integration might hold. This book provides a consistent vocabulary and visual notation framework to describe large-scale integration solutions across many technologies. It also explores in detail the advantages and limitations of asynchronous messaging architectures. The authors present practical advice on designing code that connects an application to a messaging system, and provide extensive information to help you determine when to send a message, how to route it to the proper destination, and how to monitor the health of a messaging system. If you want to know how to manage, monitor, and maintain a messaging system once it is in use, get this book.

The Soul of a New Machine


Tracy Kidder - 1981
    Tracy Kidder got a preview of this world in the late 1970s when he observed the engineers of Data General design and build a new 32-bit minicomputer in just one year. His thoughtful, prescient book, The Soul of a New Machine, tells stories of 35-year-old "veteran" engineers hiring recent college graduates and encouraging them to work harder and faster on complex and difficult projects, exploiting the youngsters' ignorance of normal scheduling processes while engendering a new kind of work ethic.These days, we are used to the "total commitment" philosophy of managing technical creation, but Kidder was surprised and even a little alarmed at the obsessions and compulsions he found. From in-house political struggles to workers being permitted to tease management to marathon 24-hour work sessions, The Soul of a New Machine explores concepts that already seem familiar, even old-hat, less than 20 years later. Kidder plainly admires his subjects; while he admits to hopeless confusion about their work, he finds their dedication heroic. The reader wonders, though, what will become of it all, now and in the future. —Rob Lightner

The Rust Programming Language


Steve Klabnik
    This is the undisputed go-to guide to Rust, written by two members of the Rust core team, with feedback and contributions from 42 members of the community. The book assumes that you’ve written code in another programming language but makes no assumptions about which one, meaning the material is accessible and useful to developers from a wide variety of programming backgrounds.Known by the Rust community as "The Book," The Rust Programming Language includes concept chapters, where you’ll learn about a particular aspect of Rust, and project chapters, where you’ll apply what you’ve learned so far to build small programs.The Book opens with a quick hands-on project to introduce the basics then explores key concepts in depth, such as ownership, the type system, error handling, and fearless concurrency. Next come detailed explanations of Rust-oriented perspectives on topics like pattern matching, iterators, and smart pointers, with concrete examples and exercises--taking you from theory to practice.The Rust Programming Language will show you how to: Grasp important concepts unique to Rust like ownership, borrowing, and lifetimes Use Cargo, Rust’s built-in package manager, to build and maintain your code, including downloading and building dependencies Effectively use Rust’s zero-cost abstractions and employ your ownYou’ll learn to develop reliable code that’s speed and memory efficient, while avoiding the infamous and arcane programming pitfalls common at the systems level. When you need to dive down into lower-level control, this guide will show you how without taking on the customary risk of crashes or security holes and without requiring you to learn the fine points of a fickle toolchain.You’ll also learn how to create command line programs, build single- and multithreaded web servers, and much more.The Rust Programming Language fully embraces Rust’s potential to empower its users. This friendly and approachable guide will help you build not only your knowledge of Rust but also your ability to program with confidence in a wider variety of domains.

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

Computer Science Distilled: Learn the Art of Solving Computational Problems


Wladston Ferreira Filho - 2017
    Designed for readers who don't need the academic formality, it's a fast and easy computer science guide. It teaches essential concepts for people who want to program computers effectively. First, it introduces discrete mathematics, then it exposes the most common algorithms and data structures. It also shows the principles that make computers and programming languages work.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Structure and Interpretation of Computer Programs


Harold Abelson - 1984
    This long-awaited revision contains changes throughout the text. There are new implementations of most of the major programming systems in the book, including the interpreters and compilers, and the authors have incorporated many small changes that reflect their experience teaching the course at MIT since the first edition was published. A new theme has been introduced that emphasizes the central role played by different approaches to dealing with time in computational models: objects with state, concurrent programming, functional programming and lazy evaluation, and nondeterministic programming. There are new example sections on higher-order procedures in graphics and on applications of stream processing in numerical programming, and many new exercises. In addition, all the programs have been reworked to run in any Scheme implementation that adheres to the IEEE standard.

Lean from the Trenches


Henrik Kniberg - 2011
    Find out how the Swedish police combined XP, Scrum, and Kanban in a 60-person project. From start to finish, you'll see how to deliver a successful product using Lean principles. We start with an organization in desperate need of a new way of doing things and finish with a group of sixty, all working in sync to develop a scalable, complex system. You'll walk through the project step by step, from customer engagement, to the daily "cocktail party," version control, bug tracking, and release. In this honest look at what works--and what doesn't--you'll find out how to: Make quality everyone's business, not just the testers. Keep everyone moving in the same direction without micromanagement. Use simple and powerful metrics to aid in planning and process improvement. Balance between low-level feature focus and high-level system focus. You'll be ready to jump into the trenches and streamline your own development process.ContentsForewordPrefacePART I: HOW WE WORK1. About the Project1.1 Timeline 51.2 How We Sliced the Elephant 61.3 How We Involved the Customer 72. Structuring the Teams3. Attending the Daily Cocktail Party3.1 First Tier: Feature Team Daily Stand-up3.2 Second Tier: Sync Meetings per Specialty3.3 Third Tier: Project Sync Meeting4. The Project Board4.1 Our Cadences4.2 How We Handle Urgent Issues and Impediments5. Scaling the Kanban Boards6. Tracking the High-Level Goal7. Defining Ready and Done7.1 Ready for Development7.2 Ready for System Test7.3 How This Improved Collaboration 8. Handling Tech Stories8.1 Example 1: System Test Bottleneck8.2 Example 2: Day Before the Release8.3 Example 3: The 7-Meter Class9. Handling Bugs9.1 Continuous System Test9.2 Fix the Bugs Immediately9.3 Why We Limit the Number of Bugs in the Bug Tracker9.4 Visualizing Bugs9.5 Preventing Recurring Bugs10. Continuously Improving the Process10.1 Team Retrospectives10.2 Process Improvement Workshops10.3 Managing the Rate of Change11. Managing Work in Progress11.1 Using WIP Limits11.2 Why WIP Limits Apply Only to Features12. Capturing and Using Process Metrics12.1 Velocity (Features per Week)12.2 Why We Don’t Use Story Points12.3 Cycle Time (Weeks per Feature)12.4 Cumulative Flow12.5 Process Cycle Efficiency13. Planning the Sprint and Release13.1 Backlog Grooming13.2 Selecting the Top Ten Features13.3 Why We Moved Backlog Grooming Out of the Sprint Planning Meeting13.4 Planning the Release14. How We Do Version Control14.1 No Junk on the Trunk14.2 Team Branches14.3 System Test Branch15. Why We Use Only Physical Kanban Boards16. What We Learned16.1 Know Your Goal16.2 Experiment16.3 Embrace Failure16.4 Solve Real Problems16.5 Have Dedicated Change Agents16.6 Involve PeoplePART II: A CLOSER LOOK AT THE TECHNIQUES 17. Agile and Lean in a Nutshell17.1 Agile in a Nutshell17.2 Lean in a Nutshell17.3 Scrum in a Nutshell17.4 XP in a Nutshell17.5 Kanban in a Nutshell18. Reducing the Test Automation Backlog18.1 What to Do About It18.2 How to Improve Test Coverage a Little Bit Each Iteration18.3 Step 1: List Your Test Cases18.4 Step 2: Classify Each Test18.5 Step 3: Sort the List in Priority Order18.6 Step 4: Automate a Few Tests Each Iteration18.7 Does This Solve the Problem?19. Sizing the Backlog with Planning Poker19.1 Estimating Without Planning Poker19.2 Estimating with Planning Poker19.3 Special Cards20. Cause-Effect Diagrams20.1 Solve Problems, Not Symptoms20.2 The Lean Problem-Solving Approach: A3 Thinking20.3 How to Use Cause-Effect Diagrams20.4 Example 1: Long Release Cycle20.5 Example 2: Defects Released to Production20.6 Example 3: Lack of Pair Programming20.7 Example 4: Lots of Problems20.8 Practical Issues: How to Create and Maintain the Diagrams20.9 Pitfalls20.10 Why Use Cause-Effect Diagrams?21. Final WordsA1. Glossary: How We Avoid Buzzword BingoIndex