Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World


Mark Miodownik - 2013
    Why is glass see-through? What makes elastic stretchy? Why does a paper clip bend? Why does any material look and behave the way it does? These are the sorts of questions that Mark Miodownik a globally-renowned materials scientist has spent his life exploring In this book he examines the materials he encounters in a typical morning, from the steel in his razor and the graphite in his pencil to the foam in his sneakers and the concrete in a nearby skyscraper.

Organic Chemistry


Janice Gorzynski Smith - 2004
    Incorporating biological, medicinal, and environmental applications, it builts an art program. Highlighting the art program are micro-to-macro art pieces that visually guide students to conceptually understand organic chemistry.

Schaum's Outline of College Physics


Frederick J. Bueche - 2006
    Provides a review of introductory noncalculus-based physics for those who do not have a strong background in mathematics.

Digital Integrated Circuits


Jan M. Rabaey - 1995
    Digital Integrated Circuits maintains a consistent, logical flow of subject matter throughout. KEY TOPICS: Addresses today's most significant and compelling industry topics, including: the impact of interconnect, design for low power, issues in timing and clocking, design methodologies, and the tremendous effect of design automation on the digital design perspective. MARKET: For readers interested in digital circuit design.

Fluid Mechanics


Pijush K. Kundu - 1990
    New to this third edition are expanded coverage of such important topics as surface boundary interfaces, improved discussions of such physical and mathematical laws as the Law of Biot and Savart and the Euler Momentum Integral. A very important new section on Computational Fluid Dynamics has been added for the very first time to this edition. Expanded and improved end-of-chapter problems will facilitate the teaching experience for students and instrutors alike. This book remains one of the most comprehensive and useful texts on fluid mechanics available today, with applications going from engineering to geophysics, and beyond to biology and general science. * Ample, useful end-of-chapter problems.* Excellent Coverage of Computational Fluid Dynamics.* Coverage of Turbulent Flows.* Solutions Manual available.

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles


Robert M. Eisberg - 1974
    Emphasizes the applications of theory, and contains new material on particle physics, electron-positron annihilation in solids and the Mossbauer effect. Includes new appendices on such topics as crystallography, Fourier Integral Description of a Wave Group, and Time-Independent Perturbation Theory.

Systems Analysis and Design


Alan Dennis - 2002
    Building on their experience as professional systems analysts and award-winning teachers, authors Dennis, Wixom, and Roth capture the experience of developing and analyzing systems in a way that students can understand and apply.With Systems Analysis and Design, 4th edition , students will leave the course with experience that is a rich foundation for further work as a systems analyst.

Basic Principles And Calculations In Chemical Engineering


David M. Himmelblau - 2003
    

Intercultural Communication in Contexts


Judith N. Martin - 1996
    The dialectical framework, integrated throughout the book, is used as a lens to examine the relationship of these research traditions. This text is unique in its emphasis on the importance of histories, popular culture, and identities.

The Theoretical Minimum: What You Need to Know to Start Doing Physics


Leonard Susskind - 2013
    In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Modern Operating Systems


Andrew S. Tanenbaum - 1992
    What makes an operating system modern? According to author Andrew Tanenbaum, it is the awareness of high-demand computer applications--primarily in the areas of multimedia, parallel and distributed computing, and security. The development of faster and more advanced hardware has driven progress in software, including enhancements to the operating system. It is one thing to run an old operating system on current hardware, and another to effectively leverage current hardware to best serve modern software applications. If you don't believe it, install Windows 3.0 on a modern PC and try surfing the Internet or burning a CD. Readers familiar with Tanenbaum's previous text, Operating Systems, know the author is a great proponent of simple design and hands-on experimentation. His earlier book came bundled with the source code for an operating system called Minux, a simple variant of Unix and the platform used by Linus Torvalds to develop Linux. Although this book does not come with any source code, he illustrates many of his points with code fragments (C, usually with Unix system calls). The first half of Modern Operating Systems focuses on traditional operating systems concepts: processes, deadlocks, memory management, I/O, and file systems. There is nothing groundbreaking in these early chapters, but all topics are well covered, each including sections on current research and a set of student problems. It is enlightening to read Tanenbaum's explanations of the design decisions made by past operating systems gurus, including his view that additional research on the problem of deadlocks is impractical except for "keeping otherwise unemployed graph theorists off the streets." It is the second half of the book that differentiates itself from older operating systems texts. Here, each chapter describes an element of what constitutes a modern operating system--awareness of multimedia applications, multiple processors, computer networks, and a high level of security. The chapter on multimedia functionality focuses on such features as handling massive files and providing video-on-demand. Included in the discussion on multiprocessor platforms are clustered computers and distributed computing. Finally, the importance of security is discussed--a lively enumeration of the scores of ways operating systems can be vulnerable to attack, from password security to computer viruses and Internet worms. Included at the end of the book are case studies of two popular operating systems: Unix/Linux and Windows 2000. There is a bias toward the Unix/Linux approach, not surprising given the author's experience and academic bent, but this bias does not detract from Tanenbaum's analysis. Both operating systems are dissected, describing how each implements processes, file systems, memory management, and other operating system fundamentals. Tanenbaum's mantra is simple, accessible operating system design. Given that modern operating systems have extensive features, he is forced to reconcile physical size with simplicity. Toward this end, he makes frequent references to the Frederick Brooks classic The Mythical Man-Month for wisdom on managing large, complex software development projects. He finds both Windows 2000 and Unix/Linux guilty of being too complicated--with a particular skewering of Windows 2000 and its "mammoth Win32 API." A primary culprit is the attempt to make operating systems more "user-friendly," which Tanenbaum views as an excuse for bloated code. The solution is to have smart people, the smallest possible team, and well-defined interactions between various operating systems components. Future operating system design will benefit if the advice in this book is taken to heart. --Pete Ostenson

Engineering Mechanics: Statics & Dynamics


Russell C. Hibbeler - 1992
    The material is reinforced with numerous examples to illustrate principles and imaginative, well-illustrated problems of varying degrees of difficulty. The book is committed to developing users' problem-solving skills. Features new "Photorealistc" figures (approximately 400) that have been rendered in often 3D photo quality detail to appeal to visual learners. Presents a thorough combination of both static and dynamic engineering mechanics theory and applications. Features a large variety of problem types from a broad range of engineering disciplines, stressing practical, realistic situations encountered in professional practice, varying levels of difficulty, and problems that involve solution by computer. For professionals in mechanical engineering, civil engineering, aeronautical engineering, and engineering mechanics careers.

Electronic Devices (Conventional Current Version)


Thomas L. Floyd - 1984
    Floyd is well known for straightforward, understandable explanations of complex concepts, as well as for non-technical, on-target treatment of mathematics. The extensive use of examples, Multisim simulations, and graphical illustrations makes even complex concepts understandable. From discrete components, to linear integrated circuits, to programmable analog devices, this books¿ coverage is well balanced between discrete and integrated circuits. Also includes focus on power amplifiers; BJT and FET amplifiers; advanced integrated circuits–instrumentation and isolation amplifiers; OTAs; log/antilog amplifiers; and converters. Thorough coverage of optical topics–high intensity LEDs and fiber optics. Devices sections on differential amplifiers and the IGBT (insulated gate bipolar transistor) are now included. For electronics technicians.

Teaching Students Who are Exceptional, Diverse, and at Risk in the General Education Classroom [with MyEducationLab Code]


Sharon R. Vaughn - 1996
    From students with disabilities, culturally diverse students, and students with limited English proficiency to economically disadvantaged students this text provides teachers with the tools they need in their diverse classrooms. Revised to reflect the most current research, terminology and teaching practices, the strength of this text continues to be its numerous learning activities and sample lessons addressing both elementary and secondary classrooms. This edition continues its very popular multi- chapter unit on curriculum adaptations with specific strategies and activities for teaching reading, writing, and mathematics. With a new chapter on Response to Intervention and Progress Monitoring and full integration of the RTI framework, and the increase emphasis on middle and secondary students, this text continues its reign as an outstanding resource for all general education teachers. 0131381253 / 9780131381254 Teaching Students Who are Exceptional, Diverse, and at Risk in the General Education Classroom (with MyEducationLab) Package consists of 0135140870 / 9780135140871 MyEducationLab -- Access Card 0137151799 / 9780137151790 Teaching Students Who are Exceptional, Diverse, and at Risk in the General Education Classroom

Textbook of Biochemistry with Clinical Correlations


Thomas M. Devlin - 1982
    Devlin's Textbook of Biochemistry with Clinical Correlations presents the biochemistry of mammalian cells, relates events at a cellular level to the subsequent physiological processes in the whole animal, and cites examples of human diseases derived from aberrant biochemical processes. The organization and content are tied together to provide students with the complete picture of biochemistry and how it relates to humans. Loaded with new material and chapters and brimming with detailed, full-color illustrations that clearly explain associated concepts, this sixth edition is an indispensable tool for students and professionals in the medical or health sciences. Key Features of the Sixth Edition Over 250 Clinical Correlations highlighting the significance of the biochemistry to clinical conditions and diseases MCAT-Style Questions with annontated answers in every chapter - in a format similar to that used by the National Board of Medical Examiners More than 1,200 high-quality, full-color illustrations A concise appendix reviewing important Organic Chemistry Concepts New to the Sixth Edition: Fully Updated with a significant revision of all chapters and major topics Two new chapters: Fundamentals of Signal Transduction and Cell Cycle, Programmed Cell Death, and Cancer A Glossary that explains important biochemical terms New sections on the Basal Lamina Protein Complex and Molecular Motors