Essays on the Theory of Numbers


Richard Dedekind - 1901
    W. R. Dedekind. The first presents Dedekind's theory of the irrational number-the Dedekind cut idea-perhaps the most famous of several such theories created in the 19th century to give a precise meaning to irrational numbers, which had been used on an intuitive basis since Greek times. This paper provided a purely arithmetic and perfectly rigorous foundation for the irrational numbers and thereby a rigorous meaning of continuity in analysis.The second essay is an attempt to give a logical basis for transfinite numbers and properties of the natural numbers. It examines the notion of natural numbers, the distinction between finite and transfinite (infinite) whole numbers, and the logical validity of the type of proof called mathematical or complete induction.The contents of these essays belong to the foundations of mathematics and will be welcomed by those who are prepared to look into the somewhat subtle meanings of the elements of our number system. As a major work of an important mathematician, the book deserves a place in the personal library of every practicing mathematician and every teacher and historian of mathematics. Authorized translations by "Vooster " V. Beman.

The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer


David Berlinski - 2000
    A basic idea that proved elusive for hundreds of years and bent the minds of the greatest thinkers in the world, the algorithm is what made the modern world possible. Without the algorithm, there would have been no computer, no Internet, no virtual reality, no e-mail, or any other technological advance that we rely on every day.In The Advent of the Algorithm, David Berlinski combines science, history, and math to explain and explore the intriguing story of how the algorithm was finally discovered by a succession of mathematicians and logicians, and how this paved the way for the digital age. Beginning with Leibniz and culminating in the middle of the twentieth century with the groundbreaking work of Gödel and Turing, The Advent of the Algorithm is an epic tale told with clarity and imaginative brilliance.

Schaum's Outline of Calculus


Frank Ayres Jr. - 1990
    They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators..

Philosophy of Mathematics: Selected Readings


Paul Benacerraf - 1983
    In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

Symmetry and the Monster: One of the Greatest Quests of Mathematics


Mark Ronan - 2006
    Now, in an exciting, fast-paced historical narrative ranging across two centuries, Mark Ronan takes us on an exhilarating tour of this final mathematical quest. Ronan describes how the quest to understand symmetry really began with the tragic young genius Evariste Galois, who died at the age of 20 in a duel. Galois, who spent the night before he died frantically scribbling his unpublished discoveries, used symmetry to understand algebraic equations, and he discovered that there were building blocks or atoms of symmetry. Most of these building blocks fit into a table, rather like the periodic table of elements, but mathematicians have found 26 exceptions. The biggest of these was dubbed the Monster--a giant snowflake in 196,884 dimensions. Ronan, who personally knows the individuals now working on this problem, reveals how the Monster was only dimly seen at first. As more and more mathematicians became involved, the Monster became clearer, and it was found to be not monstrous but a beautiful form that pointed out deep connections between symmetry, string theory, and the very fabric and form of the universe. This story of discovery involves extraordinary characters, and Mark Ronan brings these people to life, vividly recreating the growing excitement of what became the biggest joint project ever in the field of mathematics. Vibrantly written, Symmetry and the Monster is a must-read for all fans of popular science--and especially readers of such books as Fermat's Last Theorem.

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

Symmetry: A Journey into the Patterns of Nature


Marcus du Sautoy - 2007
    Our eyes and minds are drawn to symmetrical objects, from the pyramid to the pentagon. Of fundamental significance to the way we interpret the world, this unique, pervasive phenomenon indicates a dynamic relationship between objects. In chemistry and physics, the concept of symmetry explains the structure of crystals or the theory of fundamental particles; in evolutionary biology, the natural world exploits symmetry in the fight for survival; and symmetry—and the breaking of it—is central to ideas in art, architecture, and music.Combining a rich historical narrative with his own personal journey as a mathematician, Marcus du Sautoy takes a unique look into the mathematical mind as he explores deep conjectures about symmetry and brings us face-to-face with the oddball mathematicians, both past and present, who have battled to understand symmetry's elusive qualities. He explores what is perhaps the most exciting discovery to date—the summit of mathematicians' mastery in the field—the Monster, a huge snowflake that exists in 196,883-dimensional space with more symmetries than there are atoms in the sun.What is it like to solve an ancient mathematical problem in a flash of inspiration? What is it like to be shown, ten minutes later, that you've made a mistake? What is it like to see the world in mathematical terms, and what can that tell us about life itself? In Symmetry, Marcus du Sautoy investigates these questions and shows mathematical novices what it feels like to grapple with some of the most complex ideas the human mind can comprehend.

The Science of Information: From Language to Black Holes


Benjamin Schumacher - 2015
    Never before in history have we been able to acquire, record, communicate, and use information in so many different forms. Never before have we had access to such vast quantities of data of every kind. This revolution goes far beyond the limitless content that fills our lives, because information also underlies our understanding of ourselves, the natural world, and the universe. It is the key that unites fields as different as linguistics, cryptography, neuroscience, genetics, economics, and quantum mechanics. And the fact that information bears no necessary connection to meaning makes it a profound puzzle that people with a passion for philosophy have pondered for centuries.Table of ContentsLECTURE 1The Transformability of Information 4LECTURE 2Computation and Logic Gates 17LECTURE 3Measuring Information 26LECTURE 4Entropy and the Average Surprise 34LECTURE 5Data Compression and Prefix-Free Codes 44LECTURE 6Encoding Images and Sounds 57LECTURE 7Noise and Channel Capacity 69LECTURE 8Error-Correcting Codes 82LECTURE 9Signals and Bandwidth 94LECTURE 10Cryptography and Key Entropy 110LECTURE 11Cryptanalysis and Unraveling the Enigma 119LECTURE 12Unbreakable Codes and Public Keys 130LECTURE 13What Genetic Information Can Do 140LECTURE 14Life’s Origins and DNA Computing 152LECTURE 15Neural Codes in the Brain 169LECTURE 16Entropy and Microstate Information 185LECTURE 17Erasure Cost and Reversible Computing 198LECTURE 18Horse Races and Stock Markets 213LECTURE 19Turing Machines and Algorithmic Information 226LECTURE 20Uncomputable Functions and Incompleteness 239LECTURE 21Qubits and Quantum Information 253LECTURE 22Quantum Cryptography via Entanglement 266LECTURE 23It from Bit: Physics from Information 281LECTURE 24The Meaning of Information 293

In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation


William J. Cook - 2011
    In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets.In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

Gödel, Escher, Bach: An Eternal Golden Braid


Douglas R. Hofstadter - 1979
    However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.

Ordinary Differential Equations


Morris Tenenbaum - 1985
    Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.

The Theoretical Minimum: What You Need to Know to Start Doing Physics


Leonard Susskind - 2013
    In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

104 Number Theory Problems: From the Training of the USA IMO Team


Titu Andreescu - 2006
    Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.