Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

Admission Assessment Exam Review


HESI - 2012
    Plus, it helps you identify areas of weakness so you can focus your study time. Sample problems and step-by-step examples with explanations in the math and physics sections show you how to work through each problem so you understand the steps it takes to complete the equation. Practice tests with answer keys for each topic - located in the appendices for quick access - help you assess your understanding of each topic and familiarize you with the types of questions you're likely to encounter on the actual exam. HESI Hints boxes offer valuable test-taking tips, as well as rationales, suggestions, examples, and reminders for specific topics.End-of-chapter review questions help you gauge your understanding of chapter content.A full-color layout and more illustrations in the life science chapters visually reinforce key concepts for better understanding.Expanded and updated content in each chapter ensures you're studying the most current content.Basic algebra review in the math section offers additional review and practice.Color-coded chapters help you quickly find specific topic sections.Helpful organizational features in each chapter include an introduction, key terms, chapter outline, and a bulleted chapter summary to help you focus your study.A glossary at the end of the text offers quick access to key terms and their definitions.

Symmetry and the Monster: One of the Greatest Quests of Mathematics


Mark Ronan - 2006
    Now, in an exciting, fast-paced historical narrative ranging across two centuries, Mark Ronan takes us on an exhilarating tour of this final mathematical quest. Ronan describes how the quest to understand symmetry really began with the tragic young genius Evariste Galois, who died at the age of 20 in a duel. Galois, who spent the night before he died frantically scribbling his unpublished discoveries, used symmetry to understand algebraic equations, and he discovered that there were building blocks or atoms of symmetry. Most of these building blocks fit into a table, rather like the periodic table of elements, but mathematicians have found 26 exceptions. The biggest of these was dubbed the Monster--a giant snowflake in 196,884 dimensions. Ronan, who personally knows the individuals now working on this problem, reveals how the Monster was only dimly seen at first. As more and more mathematicians became involved, the Monster became clearer, and it was found to be not monstrous but a beautiful form that pointed out deep connections between symmetry, string theory, and the very fabric and form of the universe. This story of discovery involves extraordinary characters, and Mark Ronan brings these people to life, vividly recreating the growing excitement of what became the biggest joint project ever in the field of mathematics. Vibrantly written, Symmetry and the Monster is a must-read for all fans of popular science--and especially readers of such books as Fermat's Last Theorem.

In Praise of Mathematics


Alain Badiou - 2015
    Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation


William J. Cook - 2011
    In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets.In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.

Wholeness and the Implicate Order


David Bohm - 1980
    Although deeply influenced by Einstein, he was also, more unusually for a scientist, inspired by mysticism. Indeed, in the 1970s and 1980s he made contact with both J. Krishnamurti and the Dalai Lama whose teachings helped shape his work. In both science and philosophy, Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular. In this classic work he develops a theory of quantum physics which treats the totality of existence as an unbroken whole. Writing clearly and without technical jargon, he makes complex ideas accessible to anyone interested in the nature of reality.

Hidden In Plain Sight 3: The secret of time


Andrew H. Thomas - 2014
     Enjoy a fascinating detective story to solve the mystery of time - but prepare to be amazed by the twist at the end of the tale!

The Universe and the Teacup: The Mathematics of Truth and Beauty


K.C. Cole - 1998
    In The Universe and the Teacup, K. C. Cole demystifies mathematics and shows us-with humor and wonderfully accessible stories-why math need not be frightening. Using the O. J. Simpson trial, the bell curve, and Emmy Noether, the nineteenth-century woman scientist whose work was essential for Einstein's theory of relativity, Cole helps us see that more than just being a tool, math is a key to understanding the beauty of everything from rainbows to relativity.

A New Kind of Science


Stephen Wolfram - 1997
    Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton

Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace


Leonard Mlodinow - 2001
    Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.

How the Brain Learns Mathematics


David A. Sousa - 2007
    Sousa discusses the cognitive mechanisms for learning mathematics and the environmental and developmental factors that contribute to mathematics difficulties. This award-winning text examines:Children's innate number sense and how the brain develops an understanding of number relationships Rationales for modifying lessons to meet the developmental learning stages of young children, preadolescents, and adolescents How to plan lessons in PreK-12 mathematics Implications of current research for planning mathematics lessons, including discoveries about memory systems and lesson timing Methods to help elementary and secondary school teachers detect mathematics difficulties Clear connections to the NCTM standards and curriculum focal points

The Great Equations: Breakthroughs in Science from Pythagoras to Heisenberg


Robert P. Crease - 2008
    Crease tells the stories behind ten of the greatest equations in human history. Was Nobel laureate Richard Feynman really joking when he called Maxwell's electromagnetic equations the most significant event of the nineteenth century? How did Newton's law of gravitation influence young revolutionaries? Why has Euler's formula been called "God's equation," and why did a mysterious ecoterrorist make it his calling card? What role do betrayal, insanity, and suicide play in the second law of thermodynamics?The Great Equations tells the stories of how these equations were discovered, revealing the personal struggles of their ingenious originators. From "1 + 1 = 2" to Heisenberg's uncertainty principle, Crease locates these equations in the panoramic sweep of Western history, showing how they are as integral to their time and place of creation as are great works of art.