Mathematics: Its Content, Methods and Meaning


A.D. Aleksandrov - 1963
    . . Nothing less than a major contribution to the scientific culture of this world." — The New York Times Book ReviewThis major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference."This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science

The Equation That Couldn't Be Solved: How Mathematical Genius Discovered the Language of Symmetry


Mario Livio - 2005
    Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.

OpenIntro Statistics


David M. Diez - 2012
    Our inaugural effort is OpenIntro Statistics. Probability is optional, inference is key, and we feature real data whenever possible. Files for the entire book are freely available at openintro.org, and anybody can purchase a paperback copy from amazon.com for under $10.The future for OpenIntro depends on the involvement and enthusiasm of our community. Visit our website, openintro.org. We provide free course management tools, including an online question bank, utilities for creating course quizzes, and many other helpful resources.CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED ‘AS IS’ AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.Can’t find it here? Search Amazon.com Search: All Products Apparel & AccessoriesBabyBeautyBooksCamera & PhotoCell Phones & ServiceClassical MusicComputersComputer & Video GamesDVDElectronicsGourmet FoodHome & GardenMiscellaneousHealth & Personal CareJewelry & WatchesKitchen & HousewaresMagazine SubscriptionsMusicMusical InstrumentsSoftwareSports & OutdoorsTools & HardwareToys & GamesVHS Keywords:

Materials Science and Engineering: An Introduction


William D. Callister Jr. - 1985
    For examples see chapters 3, 4, 5 and 9. * Mechanical property coverage The Sixth Edition maintains its extensive, introductory level coverage of mechanical properties and failure--the most important materials considerations for many engineers. For examples see chapters 6, 7, & 8. * A picture is worth 1000 words! The Sixth Edition judiciously and extensively makes use of illustrations and photographs. The approximate 500 figures include a large number of photographs that show the microstructure of various materials (e.g., Figures 9.12, 10.8, 13.12, 14.15 and 16.5). * Current and up-to-date Students are presented with the latest developments in Material Science and Engineering. Such up-to-date content includes advanced ceramic and polymeric materials, composites, high-energy hard magnetic materials, and optical fibers in communications. For examples see sections 13.7, 15.19, 16.8, 20.9, and 21.14. * Why study These sections at the beginning of each chapter provide the student with reasons why it is important to learn the material covered in the chapter. * Learning objectives A brief list of learning objectives for each chapter states the key learning concepts for the chapter. * Resources to facilitate the materials selection process. Appendix B, which contains 11 properties for a set of approximately 100 materials, is included which be used in materials selection problems. An additional resource, Appendix C, contains the prices for all materials listed in Appendix B. * The text is packaged with a CD-ROM that contains 1) interactive software modules to enhance visualization of three-dimensional objects, 2) additional coverage of select topics, and 3) complete solutions to selected problems from the text in order to assist students in mastering problem-solving.

Digital Fundamentals


Thomas L. Floyd - 1986
    Floyd's acclaimed emphasis on "applications using real devices" and on "troubleshooting" gives users the problem-solving experience they'll need in their professional careers. Known for its clear, accurate explanations of theory supported by superior exercises and examples, this book's full-color format is packed with the visual aids today's learners need to grasp often complex concepts. KEY TOPICS The book features a comprehensive review of fundamental topics and a unique introduction to two popular programmable logic software packages (Altera and Xilinx) and boundary scan software. For electronic technicians, system designers, engineers.

Broca's Brain: Reflections on the Romance of Science


Carl Sagan - 1979
    In his delightfully down-to-earth style, he explores & explains a mind-boggling future of intelligent robots, extraterrestrial life & its consquences, & other provocative, fascinating quandries of the future we want to see today.

What Is Life? with Mind and Matter and Autobiographical Sketches


Erwin Schrödinger - 1944
    The book was based on a course of public lectures delivered by Schrödinger in February 1943 at Trinity College, Dublin. Schrödinger's lecture focused on one important question: "how can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?" In the book, Schrödinger introduced the idea of an "aperiodic crystal" that contained genetic information in its configuration of covalent chemical bonds. In the 1950s, this idea stimulated enthusiasm for discovering the genetic molecule and would give both Francis Crick and James Watson initial inspiration in their research.

Fundamentals of Electric Circuits (With CD-ROM)


Charles K. Alexander - 1999
    The main objective of this book is to present circuit analysis in a clear, easy-to-understand manner, with many practical applications to interest the student. Each chapter opens with either historical sketches or career information on a subdiscipline of electrical engineering. This is followed by an introduction that includes chapter objectives. Each chapter closes with a summary of the key points and formulas. The authors present principles in an appealing and lucid step-by-step manner, carefully explaining each step. Important formulas are highlighted to help students sort out what is essential and what is not. Many pedagogical aids reinforce the concepts learned in the text so that students get comfortable with the various methods of analysis presented in the text.

Linear Systems and Signals


B.P. Lathi - 1992
    It gives clear descriptions of linear systems and uses mathematics not only to prove axiomatic theory, but also to enhance physical and intuitive understanding.

Foundations of Analog and Digital Electronic Circuits


Anant Agarwal - 2005
    It will introduce a new way of looking not only at the treatment of circuits, but also at the treatment of introductory coursework in engineering in general. Using the concept of ''abstraction, '' the book attempts to form a bridge between the world of physics and the world of large computer systems. In particular, it attempts to unify electrical engineering and computer science as the art of creating and exploiting successive abstractions to manage the complexity of building useful electrical systems. Computer systems are simply one type of electrical systems

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

The Structure of Scientific Revolutions


Thomas S. Kuhn - 1962
    The Structure of Scientific Revolutions is that kind of book. When it was first published in 1962, it was a landmark event in the history and philosophy of science. Fifty years later, it still has many lessons to teach. With The Structure of Scientific Revolutions, Kuhn challenged long-standing linear notions of scientific progress, arguing that transformative ideas don’t arise from the day-to-day, gradual process of experimentation and data accumulation but that the revolutions in science, those breakthrough moments that disrupt accepted thinking and offer unanticipated ideas, occur outside of “normal science,” as he called it. Though Kuhn was writing when physics ruled the sciences, his ideas on how scientific revolutions bring order to the anomalies that amass over time in research experiments are still instructive in our biotech age. This new edition of Kuhn’s essential work in the history of science includes an insightful introduction by Ian Hacking, which clarifies terms popularized by Kuhn, including paradigm and incommensurability, and applies Kuhn’s ideas to the science of today. Usefully keyed to the separate sections of the book, Hacking’s introduction provides important background information as well as a contemporary context.  Newly designed, with an expanded index, this edition will be eagerly welcomed by the next generation of readers seeking to understand the history of our perspectives on science.

Numerical Recipes in C: The Art of Scientific Computing


William H. Press - 1988
    In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.

Ecology: Concepts and Applications


Manuel C. Molles Jr. - 1999
    An evolutionary perspective forms the foundation of the entire discussion. The book begins with the natural history of the planet, considers portions of the whole in the middle chapters, and ends with another perspective of the entire planet in the concluding chapter. Its unique organization of focusing only on several key concepts in each chapter sets it apart from the competition. .

The Physics of Superheroes


James Kakalios - 2006
    Along the way he provides an engaging and witty commentary while introducing the lay reader to both classic and cutting-edge concepts in physics, including:What Superman's strength can tell us about the Newtonian physics of force, mass, and accelerationHow Iceman's and Storm's powers illustrate the principles of thermal dynamicsThe physics behind the death of Spider-Man's girlfriend Gwen StacyWhy physics professors gone bad are the most dangerous evil geniuses!