Book picks similar to
The Little Typer by Daniel P. Friedman
programming
computer-science
cs
tech
C Programming: A Modern Approach
Kimberly Nelson King - 1996
With adoptions at over 225 colleges, the first edition was one of the leading C textbooks of the last ten years. The second edition maintains all the book's popular features and brings it up to date with coverage of the C99 standard. The new edition also adds a significant number of exercises and longer programming projects, and includes extensive revisions and updates.
Mastering Regular Expressions
Jeffrey E.F. Friedl - 1997
They are now standard features in a wide range of languages and popular tools, including Perl, Python, Ruby, Java, VB.NET and C# (and any language using the .NET Framework), PHP, and MySQL.If you don't use regular expressions yet, you will discover in this book a whole new world of mastery over your data. If you already use them, you'll appreciate this book's unprecedented detail and breadth of coverage. If you think you know all you need to know about regularexpressions, this book is a stunning eye-opener.As this book shows, a command of regular expressions is an invaluable skill. Regular expressions allow you to code complex and subtle text processing that you never imagined could be automated. Regular expressions can save you time and aggravation. They can be used to craft elegant solutions to a wide range of problems. Once you've mastered regular expressions, they'll become an invaluable part of your toolkit. You will wonder how you ever got by without them.Yet despite their wide availability, flexibility, and unparalleled power, regular expressions are frequently underutilized. Yet what is power in the hands of an expert can be fraught with peril for the unwary. Mastering Regular Expressions will help you navigate the minefield to becoming an expert and help you optimize your use of regular expressions.Mastering Regular Expressions, Third Edition, now includes a full chapter devoted to PHP and its powerful and expressive suite of regular expression functions, in addition to enhanced PHP coverage in the central "core" chapters. Furthermore, this edition has been updated throughout to reflect advances in other languages, including expanded in-depth coverage of Sun's java.util.regex package, which has emerged as the standard Java regex implementation.Topics include:A comparison of features among different versions of many languages and toolsHow the regular expression engine worksOptimization (major savings available here!)Matching just what you want, but not what you don't wantSections and chapters on individual languagesWritten in the lucid, entertaining tone that makes a complex, dry topic become crystal-clear to programmers, and sprinkled with solutions to complex real-world problems, Mastering Regular Expressions, Third Edition offers a wealth information that you can put to immediateuse.Reviews of this new edition and the second edition: "There isn't a better (or more useful) book available on regular expressions."--Zak Greant, Managing Director, eZ Systems"A real tour-de-force of a book which not only covers the mechanics of regexes in extraordinary detail but also talks about efficiency and the use of regexes in Perl, Java, and .NET...If you use regular expressions as part of your professional work (even if you already have a good book on whatever language you're programming in) I would strongly recommend this book to you."--Dr. Chris Brown, Linux Format"The author does an outstanding job leading the reader from regexnovice to master. The book is extremely easy to read and chock full ofuseful and relevant examples...Regular expressions are valuable toolsthat every developer should have in their toolbox. Mastering RegularExpressions is the definitive guide to the subject, and an outstandingresource that belongs on every programmer's bookshelf. Ten out of TenHorseshoes."--Jason Menard, Java Ranch
Learn Python The Hard Way
Zed A. Shaw - 2010
The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.
The Effective Engineer: How to Leverage Your Efforts In Software Engineering to Make a Disproportionate and Meaningful Impact
Edmond Lau - 2015
I'm going to share that mindset with you — along with hundreds of actionable techniques and proven habits — so you can shortcut those years.Introducing The Effective Engineer — the only book designed specifically for today's software engineers, based on extensive interviews with engineering leaders at top tech companies, and packed with hundreds of techniques to accelerate your career.For two years, I embarked on a quest seeking an answer to one question:How do the most effective engineers make their efforts, their teams, and their careers more successful?I interviewed and collected stories from engineering VPs, directors, managers, and other leaders at today's top software companies: established, household names like Google, Facebook, Twitter, and LinkedIn; rapidly growing mid-sized companies like Dropbox, Square, Box, Airbnb, and Etsy; and startups like Reddit, Stripe, Instagram, and Lyft.These leaders shared stories about the most valuable insights they've learned and the most common and costly mistakes that they've seen engineers — sometimes themselves — make.This is just a small sampling of the hard questions I posed to them:- What engineering qualities correlate with future success?- What have you done that has paid off the highest returns?- What separates the most effective engineers you've worked with from everyone else?- What's the most valuable lesson your team has learned in the past year?- What advice do you give to new engineers on your team? Everyone's story is different, but many of the lessons share common themes.You'll get to hear stories like:- How did Instagram's team of 5 engineers build and support a service that grew to over 40 million users by the time the company was acquired?- How and why did Quora deploy code to production 40 to 50 times per day?- How did the team behind Google Docs become the fastest acquisition to rewrite its software to run on Google's infrastructure?- How does Etsy use continuous experimentation to design features that are guaranteed to increase revenue at launch?- How did Facebook's small infrastructure team effectively operate thousands of database servers?- How did Dropbox go from barely hiring any new engineers to nearly tripling its team size year-over-year? What's more, I've distilled their stories into actionable habits and lessons that you can follow step-by-step to make your career and your team more successful.The skills used by effective engineers are all learnable.And I'll teach them to you. With The Effective Engineer, I'll teach you a unifying framework called leverage — the value produced per unit of time invested — that you can use to identify the activities that produce disproportionate results.Here's a sneak peek at some of the lessons you'll learn. You'll learn how to:- Prioritize the right projects and tasks to increase your impact.- Earn more leeway from your peers and managers on your projects.- Spend less time maintaining and fixing software and more time building and shipping new features.- Produce more accurate software estimates.- Validate your ideas cheaply to reduce wasted work.- Navigate organizational and people-related bottlenecks.- Find the appropriate level of code reviews, testing, abstraction, and technical debt to balance speed and quality.- Shorten your debugging workflow to increase your iteration speed.
Natural Language Processing with Python
Steven Bird - 2009
With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Engineering a Compiler
Keith D. Cooper - 2003
No longer is execution speed the sole criterion for judging compiled code. Today, code might be judged on how small it is, how much power it consumes, how well it compresses, or how many page faults it generates. In this evolving environment, the task of building a successful compiler relies upon the compiler writer's ability to balance and blend algorithms, engineering insights, and careful planning. Today's compiler writer must choose a path through a design space that is filled with diverse alternatives, each with distinct costs, advantages, and complexities.Engineering a Compiler explores this design space by presenting some of the ways these problems have been solved, and the constraints that made each of those solutions attractive. By understanding the parameters of the problem and their impact on compiler design, the authors hope to convey both the depth of the problems and the breadth of possible solutions. Their goal is to cover a broad enough selection of material to show readers that real tradeoffs exist, and that the impact of those choices can be both subtle and far-reaching.Authors Keith Cooper and Linda Torczon convey both the art and the science of compiler construction and show best practice algorithms for the major passes of a compiler. Their text re-balances the curriculum for an introductory course in compiler construction to reflect the issues that arise in current practice.
Advanced Programming in the UNIX Environment
W. Richard Stevens - 1992
Rich Stevens describes more than 200 system calls and functions; since he believes the best way to learn code is to read code, a brief example accompanies each description.Building upon information presented in the first 15 chapters, the author offers chapter-long examples teaching you how to create a database library, a PostScript printer driver, a modem dialer, and a program that runs other programs under a pseudo terminal. To make your analysis and understanding of this code even easier, and to allow you to modify it, all of the code in the book is available via UUNET.A 20-page appendix provides detailed function prototypes for all the UNIX, POSIX, and ANSI C functions that are described in the book, and lists the page on which each prototype function is described in detail. Additional tables throughout the text and a thorough index make Advanced Programming in the UNIX Environment an invaluable reference tool that all UNIX programmers - beginners to experts - w
Make Your Own Neural Network
Tariq Rashid - 2016
Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers
John MacCormick - 2012
A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.
Expert C Programming: Deep C Secrets
Peter van der Linden - 1994
This book will help the C programmer reach new heights as a professional. Organized to make it easy for the reader to scan to sections that are relevant to their immediate needs.
Patterns of Software: Tales from the Software Community
Richard P. Gabriel - 1996
But while most of us today can work a computer--albeit with the help of the ever-present computer software manual--we know little about what goes on inside the box and virtually nothing about software designor the world of computer programming. In Patterns of Software, the respected software pioneer and computer scientist, Richard Gabriel, gives us an informative inside look at the world of software design and computer programming and the business that surrounds them. In this wide-ranging volume, Gabriel discusses such topics as whatmakes a successful programming language, how the rest of the world looks at and responds to the work of computer scientists, how he first became involved in computer programming and software development, what makes a successful software business, and why his own company, Lucid, failed in 1994, tenyears after its inception. Perhaps the most interesting and enlightening section of the book is Gabriel's detailed look at what he believes are the lessons that can be learned from architect Christopher Alexander, whose books--including the seminal A Pattern Language--have had a profound influence on the computer programmingcommunity. Gabriel illuminates some of Alexander's key insights--the quality without a name, pattern languages, habitability, piecemeal growth--and reveals how these influential architectural ideas apply equally well to the construction of a computer program. Gabriel explains the concept ofhabitability, for example, by comparing a program to a New England farmhouse and the surrounding structures which slowly grow and are modified according to the needs and desires of the people who live and work on the farm. Programs live and grow, and their inhabitants--the programmers--need to workwith that program the way the farmer works with the homestead. Although computer scientists and software entrepreneurs will get much out of this book, the essays are accessible to everyone and will intrigue anyone curious about Silicon Valley, computer programming, or the world of high technology.
Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation
Jez Humble - 2010
This groundbreaking new book sets out the principles and technical practices that enable rapid, incremental delivery of high quality, valuable new functionality to users. Through automation of the build, deployment, and testing process, and improved collaboration between developers, testers, and operations, delivery teams can get changes released in a matter of hours-- sometimes even minutes-no matter what the size of a project or the complexity of its code base. Jez Humble and David Farley begin by presenting the foundations of a rapid, reliable, low-risk delivery process. Next, they introduce the "deployment pipeline," an automated process for managing all changes, from check-in to release. Finally, they discuss the "ecosystem" needed to support continuous delivery, from infrastructure, data and configuration management to governance. The authors introduce state-of-the-art techniques, including automated infrastructure management and data migration, and the use of virtualization. For each, they review key issues, identify best practices, and demonstrate how to mitigate risks. Coverage includes - Automating all facets of building, integrating, testing, and deploying software - Implementing deployment pipelines at team and organizational levels - Improving collaboration between developers, testers, and operations - Developing features incrementally on large and distributed teams - Implementing an effective configuration management strategy - Automating acceptance testing, from analysis to implementation - Testing capacity and other non-functional requirements - Implementing continuous deployment and zero-downtime releases - Managing infrastructure, data, components and dependencies - Navigating risk management, compliance, and auditing Whether you're a developer, systems administrator, tester, or manager, this book will help your organization move from idea to release faster than ever--so you can deliver value to your business rapidly and reliably.
The Manager's Path: A Guide for Tech Leaders Navigating Growth and Change
Camille Fournier - 2017
Tech companies in general lack the experience, tools, texts, and frameworks to do it well. And the handful of books that share tips and tricks of engineering management don t explain how to supervise employees in the face of growth and change.In this book, author Camille Fournier takes you through the stages of technical management, from mentoring interns to working with the senior staff. You ll get actionable advice for approaching various obstacles in your path, whether you re a new manager, a mentor, or a more experienced leader looking for fresh advice. Pick up this book and learn how to become a better manager and leader in your organization. * Discover how to manage small teams and large/multi-level teams * Understand how to build and bootstrap a unifying culture in teams * Deal with people problems and learn how to mentor other managers and new leaders * Learn how to manage yourself: avoid common pitfalls that challenge many leaders * Obtain several practices that you can incorporate and practice along the way
CLR via C# (Pro-Developer)
Jeffrey Richter - 2006
This guide is suitable for developers building various kinds of application - including Microsoft[registered] ASP.NET, Windows[registered] Forms, Microsoft[registered] SQL Server[registered], Web services, and console applications.
Problem Solving with Algorithms and Data Structures Using Python
Bradley N. Miller - 2005
It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.