Book picks similar to
Functional Analysis by George Bachman
mathematics
math
harish
fa
Fuzzy Logic: The Revolutionary Computer Technology That Is Changing Our World
Daniel McNeill - 1993
Professor Lofti Zadeh masterminded "fuzzy logic"--a way of programming computers to "make decisions" bases on imprecise data and complex situations. In "Fuzzy Logic," Daniel McNeill and Paul Freiberger relate the compelling tale of this remarkable new technology, the genius who brought it to life, and how it will soon affect the lives of every one of us.
Introduction to Robotics: Mechanics and Control
John J. Craig - 1985
This edition features new material on Controls, Computer-Aided Design and Manufacturing, and Off-Line Programming Systems.
Physics, Volume 1
Robert Resnick - 1966
The Fourth Edition of volumes 1 and 2 is concerned with mechanics and E&M/Optics. New features include: expanded coverage of classic physics topics, substantial increases in the number of in-text examples which reinforce text exposition, the latest pedagogical and technical advances in the field, numerical analysis, computer-generated graphics, computer projects and much more.
A Tour of the Calculus
David Berlinski - 1995
Just how calculus makes these things possible and in doing so finds a correspondence between real numbers and the real world is the subject of this dazzling book by a writer of extraordinary clarity and stylistic brio. Even as he initiates us into the mysteries of real numbers, functions, and limits, Berlinski explores the furthest implications of his subject, revealing how the calculus reconciles the precision of numbers with the fluidity of the changing universe. "An odd and tantalizing book by a writer who takes immense pleasure in this great mathematical tool, and tries to create it in others."--New York Times Book Review
Group Theory in the Bedroom, and Other Mathematical Diversions
Brian Hayes - 2008
(The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.
Mathematical Analysis
S.C. Malik - 1992
This book discusses real sequences and series, continuity, functions of several variables, elementary and implicit functions, Riemann and Riemann-Stieltjes integrals, and Lebesgue integrals.
God Created the Integers: The Mathematical Breakthroughs That Changed History
Stephen Hawking - 2005
In this collection of landmark mathematical works, editor Stephen Hawking has assembled the greatest feats humans have ever accomplished using just numbers and their brains.
Concepts of Modern Mathematics
Ian Stewart - 1975
Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.
The Equation That Couldn't Be Solved: How Mathematical Genius Discovered the Language of Symmetry
Mario Livio - 2005
Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth
Paul Hoffman - 1998
Based on a National Magazine Award-winning article, this masterful biography of Hungarian-born Paul Erdos is both a vivid portrait of an eccentric genius and a layman's guide to some of this century's most startling mathematical discoveries.
Book of Proof
Richard Hammack - 2009
It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.
How the Brain Learns Mathematics
David A. Sousa - 2007
Sousa discusses the cognitive mechanisms for learning mathematics and the environmental and developmental factors that contribute to mathematics difficulties. This award-winning text examines:Children's innate number sense and how the brain develops an understanding of number relationships Rationales for modifying lessons to meet the developmental learning stages of young children, preadolescents, and adolescents How to plan lessons in PreK-12 mathematics Implications of current research for planning mathematics lessons, including discoveries about memory systems and lesson timing Methods to help elementary and secondary school teachers detect mathematics difficulties Clear connections to the NCTM standards and curriculum focal points
The Calendar
David Ewing Duncan - 1998
The year 2000 is alternatively the year 2544 (Buddhist), 6236 (Ancient Egyptian), 5761 (Jewish) or simply the Year of the Dragon (Chinese). The story of the creation of the Western calendar, which is related in this book, is a story of emperors and popes, mathematicians and monks, and the growth of scientific calculation to the point where, bizarrely, our measurement of time by atomic pulses is now more accurate than time itself: the Earth is an elderly lady and slightly eccentric - she loses half a second a century. Days have been invented (Julius Caesar needed an extra 80 days in 46BC), lost (Pope Gregory XIII ditched ten days in 1582) and moved (because Julius Caesar had 31 in his month, Augustus determined that he should have the same, so he pinched one from February).
Organic Chemistry II as a Second Language
David R. Klein - 2005
It explores the critical concepts while also examining why they are relevant. The core content is presented within the framework of predicting products, proposing mechanisms, and solving synthesis problems. Readers will fine-tune the key skills involved in solving those types of problems with the help of interactive, step-by-step instructions and problems.