Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

How to Think Like a Mathematician


Kevin Houston - 2009
    Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

Lean Lesson Planning: A practical approach to doing less and achieving more in the classroom


Peps Mccrea - 2015
    It outlines a set of mindsets and habits you can use to help you identify the most impactful parts of your teaching, and put them centre stage.It's about doing less to achieve more.But it's also about being happier and more confident in the classroom. Building stronger routines around the essentials will give you more time and space to appreciate and think creatively about your work.POWER UP YOUR PLANNINGLean Lesson Planning draws on the latest evidence from educational research and cognitive science, to present a concise and coherent framework to help you improve learning experiences and outcomes for your students. It's the evidence-based teacher's guide to planning for learning, and sits alongside books such as Teach Like a Champion, Embedded Formative Assessment, and Visible Learning for Teachers.NOTE If you're looking for ways to short-cut the amount of time you spend planning lessons, then this book is not for you. The approach outlined in Lean Lesson Planning requires effort and practice, that given time, will lead to better teaching and higher quality learning for less input.---CONTENTSACT I Lean foundations1. Defining lean 2. Lean mindsets 3. Lean habits ACT II Habits for planning4. Backwards design 5. Knowing knowledge 6. Checking understanding 7. Efficient strategies 8. Lasting learning 9. Inter-lesson planning ACT III Habits for growing10. Building excellence 11. Growth teaching 12. Collective improvement Lean Lesson Planning is the first instalment in the High Impact Teaching series.

The Art of Problem Solving, Volume 1: The Basics


Sandor Lehoczky - 2006
    The Art of Problem Solving, Volume 1, is the classic problem solving textbook used by many successful MATHCOUNTS programs, and have been an important building block for students who, like the authors, performed well enough on the American Mathematics Contest series to qualify for the Math Olympiad Summer Program which trains students for the United States International Math Olympiad team.Volume 1 is appropriate for students just beginning in math contests. MATHCOUNTS and novice high school students particularly have found it invaluable. Although the Art of Problem Solving is widely used by students preparing for mathematics competitions, the book is not just a collection of tricks. The emphasis on learning and understanding methods rather than memorizing formulas enables students to solve large classes of problems beyond those presented in the book.Speaking of problems, the Art of Problem Solving, Volume 1, contains over 500 examples and exercises culled from such contests as MATHCOUNTS, the Mandelbrot Competition, the AMC tests, and ARML. Full solutions (not just answers!) are available for all the problems in the solution manual.

Problem-Solving Strategies


Arthur Engel - 1997
    The discussion of problem solving strategies is extensive. It is written for trainers and participants of contests of all levels up to the highest level: IMO, Tournament of the Towns, and the noncalculus parts of the Putnam Competition. It will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", "problem of the month", and "research problem of the year" to their students, thus bringing a creative atmosphere into their classrooms with continuous discussions of mathematical problems. This volume is a must-have for instructors wishing to enrich their teaching with some interesting non-routine problems and for individuals who are just interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. Very few problems have no solutions. Readers interested in increasing the effectiveness of the book can do so by working on the examples in addition to the problems thereby increasing the number of problems to over 1300. In addition to being a valuable resource of mathematical problems and solution strategies, this volume is the most complete training book on the market.

Mathematics: Its Content, Methods and Meaning


A.D. Aleksandrov - 1963
    . . Nothing less than a major contribution to the scientific culture of this world." — The New York Times Book ReviewThis major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference."This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science

Essential Poker Math, Expanded Edition: Fundamental No Limit Hold'em Mathematics You Need To Know


Alton Hardin - 2016
    This book will teach you the basic poker mathematics you need to know in order to improve and outplay your opponents, and focuses on foundational poker mathematics - the ones you’ll use day in and day out at the poker table; and probably the ones your opponents neglect.

The Math Myth: And Other STEM Delusions


Andrew Hacker - 2015
    Why, he wondered, do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes?The Math Myth expands Hacker’s scrutiny of many widely held assumptions, like the notions that mathematics broadens our minds, that mastery of azimuths and asymptotes will be needed for most jobs, that the entire Common Core syllabus should be required of every student. He worries that a frenzied emphasis on STEM is diverting attention from other pursuits and subverting the spirit of the country.In fact, Hacker honors mathematics as a calling (he has been a professor of mathematics) and extols its glories and its goals. Yet he shows how mandating it for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics.The Math Myth is sure to spark a heated and needed national conversation not just about mathematics but about the kind of people and society we want to be.

The Learning Rainforest: Great Teaching In Real Classroom


Tom Sherrington - 2017
    Aimed at teachers of all kinds, busy people working in complex environments with little time to spare, it is a celebration of great teaching - the joy of it and the intellectual and personal rewards that teaching brings.The core of the book is a guide to making teaching both effective and manageable; it provides an accessible summary of key contemporary evidence-based ideas about teaching and learning and the debates that all teachers should be engaging in. It's a book packed with strategies for making great teaching attainable in the context of real schools.The Learning Rainforest metaphor is an attempt to capture various different elements of our understanding and experience of teaching. Tom's ideas about what constitutes great teaching are drawn from his experiences as a teacher and a school leader over the last 30 years, alongside everything he has read and all the debates he's engaged with during that time.An underlying theme of this book is that a career in teaching is a process of continual personal development and professional learning as is engaging in fundamental debates rage on about the kind of education we value. As you meet each new class and move from school to school, your perspectives shift; your sense of what seems to work adjusts to each new context.In writing this book, Tom is trying to capture some of the journey he's been on. He has learned that it is ok to change your mind. More than that - sometimes it is simply necessary to get your head out of the sand, to change direction; to admit your mistakes.

The Magic Square - Tricking Your Way to Mental Superpowers (Faking Smart Book 3)


Lewis Smile - 2012
    Perform this genius seemingly-mathematical feat on any napkin, any receipt, or even on your friend's arm.You can learn the famous Magic Square, and you can learn it in under 10 minutes.You will have a magician's Grand Finale, in your hands at any moment. This gets audible gasps, and you can wow people with this for the rest of your life...**************************THE PERFORMANCE:**************************Your friend will name a random number. You then speedily write 16 different numbers into a 4x4 grid. With a smug flourish, you then reveal that all combinations and directions within the grid add up to their chosen number. It is simply mind-blowing.Effortlessly perform a trick that it seems only a computer could perform, and learn how in 10 minutes from right now.

Thinking Mathematically


John Mason - 1982
    It demonstrates how to encourage, develop, and foster the processes which seem to come naturally to mathematicians.

How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)


New Scientist - 2018
    No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.

Mathematical Proofs: A Transition to Advanced Mathematics


Gary Chartrand - 2002
    This text introduces students to proof techniques and writing proofs of their own. As such, it is an introduction to the mathematics enterprise, providing solid introductions to relations, functions, and cardinalities of sets.

The Value of Science: Essential Writings of Henri Poincare


Henri Poincaré - 1905
    A genius who throughout his life solved complex mathematical calculations in his head, and a writer gifted with an inimitable style, Poincaré rose to the challenge of interpreting the philosophy of science to scientists and nonscientists alike. His lucid and welcoming prose made him the Carl Sagan of his time. This volume collects his three most important books: Science and Hypothesis (1903); The Value of Science (1905); and Science and Method (1908).

The Cartoon Guide to Algebra


Larry Gonick - 2015
    He also offers a concise overview of algebra’s history and its many practical applications in modern life.Combining Gonick’s unique ability to make difficult topics fun, interesting, and easy-to-understand—while still relaying the essential information in a clear, organized and accurate format—The Cartoon Guide to Algebra is an essential supplement for students of all levels, in high school, college, and beyond.