Genetic Algorithms in Search, Optimization, and Machine Learning
David Edward Goldberg - 1989
Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required. 0201157675B07092001
Rails Antipatterns: Best Practice Ruby on Rails Refactoring
Chad Pytel - 2010
Rails(TM) AntiPatterns identifies these widespread Rails code and design problems, explains why they're bad and why they happen--and shows exactly what to do instead.The book is organized into concise, modular chapters--each outlines a single common AntiPattern and offers detailed, cookbook-style code solutions that were previously difficult or impossible to find. Leading Rails developers Chad Pytel and Tammer Saleh also offer specific guidance for refactoring existing bad code or design to reflect sound object-oriented principles and established Rails best practices. With their help, developers, architects, and testers can dramatically improve new and existing applications, avoid future problems, and establish superior Rails coding standards throughout their organizations.This book will help you understand, avoid, and solve problems withModel layer code, from general object-oriented programming violations to complex SQL and excessive redundancy Domain modeling, including schema and database issues such as normalization and serialization View layer tools and conventions Controller-layer code, including RESTful code Service-related APIs, including timeouts, exceptions, backgrounding, and response codes Third-party code, including plug-ins and gems Testing, from test suites to test-driven development processes Scaling and deployment Database issues, including migrations and validations System design for "graceful degradation" in the real world
Building Mobile Apps at Scale: 39 Engineering Challenges
Gergely Orosz - 2021
By scale, we mean having numbers of users in the millions and being built by large engineering teams.For mobile engineers, this book is a blueprint for modern app engineering approaches. For non-mobile engineers and managers, it is a resource with which to build empathy and appreciation for the complexity of world-class mobile engineering.
The Art of R Programming: A Tour of Statistical Software Design
Norman Matloff - 2011
No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.
Head First Statistics
Dawn Griffiths - 2008
Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics so you can understand key points and actually use them. Learn to present data visually with charts and plots; discover the difference between taking the average with mean, median, and mode, and why it's important; learn how to calculate probability and expectation; and much more.Head First Statistics is ideal for high school and college students taking statistics and satisfies the requirements for passing the College Board's Advanced Placement (AP) Statistics Exam. With this book, you'll:Study the full range of topics covered in first-year statistics Tackle tough statistical concepts using Head First's dynamic, visually rich format proven to stimulate learning and help you retain knowledge Explore real-world scenarios, ranging from casino gambling to prescription drug testing, to bring statistical principles to life Discover how to measure spread, calculate odds through probability, and understand the normal, binomial, geometric, and Poisson distributions Conduct sampling, use correlation and regression, do hypothesis testing, perform chi square analysis, and moreBefore you know it, you'll not only have mastered statistics, you'll also see how they work in the real world. Head First Statistics will help you pass your statistics course, and give you a firm understanding of the subject so you can apply the knowledge throughout your life.
The Twelve-Factor App
Adam Wiggins - 2012
The twelve-factor app is a methodology for building software-as-a-service apps that: - Use declarative formats for setup automation, to minimize time and cost for new developers joining the project; - Have a clean contract with the underlying operating system, offering maximum portability between execution environments; - Are suitable for deployment on modern cloud platforms, obviating the need for servers and systems administration; - Minimize divergence between development and production, enabling continuous deployment for maximum agility; - And can scale up without significant changes to tooling, architecture, or development practices.The twelve-factor methodology can be applied to apps written in any programming language, and which use any combination of backing services (database, queue, memory cache, etc).
The Manager's Path: A Guide for Tech Leaders Navigating Growth and Change
Camille Fournier - 2017
Tech companies in general lack the experience, tools, texts, and frameworks to do it well. And the handful of books that share tips and tricks of engineering management don t explain how to supervise employees in the face of growth and change.In this book, author Camille Fournier takes you through the stages of technical management, from mentoring interns to working with the senior staff. You ll get actionable advice for approaching various obstacles in your path, whether you re a new manager, a mentor, or a more experienced leader looking for fresh advice. Pick up this book and learn how to become a better manager and leader in your organization. * Discover how to manage small teams and large/multi-level teams * Understand how to build and bootstrap a unifying culture in teams * Deal with people problems and learn how to mentor other managers and new leaders * Learn how to manage yourself: avoid common pitfalls that challenge many leaders * Obtain several practices that you can incorporate and practice along the way
A First Course in Probability
Sheldon M. Ross - 1976
A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.
An Elegant Puzzle: Systems of Engineering Management
Will Larson - 2019
Management is a key part of any organization, yet the discipline is often self-taught and unstructured. Getting to the good solutions of complex management challenges can make the difference between fulfillment and frustration for teams, and, ultimately, the success or failure of companies. Will Larson's An Elegant Puzzle orients around the particular challenges of engineering management--from sizing teams to technical debt to succession planning--and provides a path to the good solutions. Drawing from his experience at Digg, Uber, and Stripe, Will Larson has developed a thoughtful approach to engineering management that leaders of all levels at companies of all sizes can apply. An Elegant Puzzle balances structured principles and human-centric thinking to help any leader create more effective and rewarding organizations for engineers to thrive in.
Advanced Swift
Chris Eidhof - 2016
If you have read the Swift Programming Guide, and want to explore more, this book is for you.Swift is a great language for systems programming, but also lends itself for very high-level programming. We'll explore both high-level topics (for example, programming with generics and protocols), as well as low-level topics (for example, wrapping a C library and string internals).
Bayes Theorem: A Visual Introduction For Beginners
Dan Morris - 2016
Bayesian statistics is taught in most first-year statistics classes across the nation, but there is one major problem that many students (and others who are interested in the theorem) face. The theorem is not intuitive for most people, and understanding how it works can be a challenge, especially because it is often taught without visual aids. In this guide, we unpack the various components of the theorem and provide a basic overview of how it works - and with illustrations to help. Three scenarios - the flu, breathalyzer tests, and peacekeeping - are used throughout the booklet to teach how problems involving Bayes Theorem can be approached and solved. Over 60 hand-drawn visuals are included throughout to help you work through each problem as you learn by example. The illustrations are simple, hand-drawn, and in black and white. For those interested, we have also included sections typically not found in other beginner guides to Bayes Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios.A few examples of how to think like a Bayesian in everyday life. Bayes Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. It is a great tool that can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes Rule. Bayes Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700’s to its being used to break the German’s Enigma Code during World War 2, its tale is quite phenomenal.Fascinating real-life stories on how Bayes formula is used in everyday life.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. We have summed up 3 examples for you and provided an example of how Bayes could be used.An expanded definitions, notations, and proof section.We have included an expanded definitions and notations sections at the end of the booklet. In this section we define core terms more concretely, and also cover additional terms you might be confused about. A recommended readings section.From The Theory That Would Not Die to a few other books, there are a number of recommendations we have for further reading. Take a look! If you are a visual learner and like to learn by example, this intuitive booklet might be a good fit for you. Bayesian statistics is an incredibly fascinating topic and likely touches your life every single day. It is a very important tool that is used in data analysis throughout a wide-range of industries - so take an easy dive into the theorem for yourself with a visual approach!If you are looking for a short beginners guide packed with visual examples, this booklet is for you.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Algorithms Illuminated (Part 1): The Basics
Tim Roughgarden - 2017
Their applications range from network routing and computational genomics to public-key cryptography and database system implementation. Studying algorithms can make you a better programmer, a clearer thinker, and a master of technical interviews. Algorithms Illuminated is an accessible introduction to the subject---a transcript of what an expert algorithms tutor would say over a series of one-on-one lessons. The exposition is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. Part 1 of the book series covers asymptotic analysis and big-O notation, divide-and-conquer algorithms and the master method, randomized algorithms, and several famous algorithms for sorting and selection.
The Elements of Data Analytic Style
Jeffrey Leek - 2015
This book is focused on the details of data analysis that sometimes fall through the cracks in traditional statistics classes and textbooks. It is based in part on the authors blog posts, lecture materials, and tutorials. The author is one of the co-developers of the Johns Hopkins Specialization in Data Science the largest data science program in the world that has enrolled more than 1.76 million people. The book is useful as a companion to introductory courses in data science or data analysis. It is also a useful reference tool for people tasked with reading and critiquing data analyses. It is based on the authors popular open-source guides available through his Github account (https://github.com/jtleek). The paper is also available through Leanpub (https://leanpub.com/datastyle), if the book is purchased on that platform you are entitled to lifetime free updates.