The Algorithm Design Manual


Steven S. Skiena - 1997
    Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide. THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains: * a complete hypertext version of the full printed book. * the source code and URLs for all cited implementations. * over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.

Bayes Theorem: A Visual Introduction For Beginners


Dan Morris - 2016
    Bayesian statistics is taught in most first-year statistics classes across the nation, but there is one major problem that many students (and others who are interested in the theorem) face. The theorem is not intuitive for most people, and understanding how it works can be a challenge, especially because it is often taught without visual aids. In this guide, we unpack the various components of the theorem and provide a basic overview of how it works - and with illustrations to help. Three scenarios - the flu, breathalyzer tests, and peacekeeping - are used throughout the booklet to teach how problems involving Bayes Theorem can be approached and solved. Over 60 hand-drawn visuals are included throughout to help you work through each problem as you learn by example. The illustrations are simple, hand-drawn, and in black and white. For those interested, we have also included sections typically not found in other beginner guides to Bayes Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios.A few examples of how to think like a Bayesian in everyday life. Bayes Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. It is a great tool that can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes Rule. Bayes Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700’s to its being used to break the German’s Enigma Code during World War 2, its tale is quite phenomenal.Fascinating real-life stories on how Bayes formula is used in everyday life.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. We have summed up 3 examples for you and provided an example of how Bayes could be used.An expanded definitions, notations, and proof section.We have included an expanded definitions and notations sections at the end of the booklet. In this section we define core terms more concretely, and also cover additional terms you might be confused about. A recommended readings section.From The Theory That Would Not Die to a few other books, there are a number of recommendations we have for further reading. Take a look! If you are a visual learner and like to learn by example, this intuitive booklet might be a good fit for you. Bayesian statistics is an incredibly fascinating topic and likely touches your life every single day. It is a very important tool that is used in data analysis throughout a wide-range of industries - so take an easy dive into the theorem for yourself with a visual approach!If you are looking for a short beginners guide packed with visual examples, this booklet is for you.

Introductory Statistics


Prem S. Mann - 2006
    The realistic content of its examples and exercises, the clarity and brevity of its presentation, and the soundness of its pedagogical approach have received the highest remarks from both students and instructors. Now this bestseller is available in a new 6th edition.

Statistical Rethinking: A Bayesian Course with Examples in R and Stan


Richard McElreath - 2015
    Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

Elements of Partial Differential Equations


Ian N. Sneddon - 2006
    It emphasizes forms suitable for students and researchers whose interest lies in solving equations rather than in general theory. Solutions to odd-numbered problems appear at the end. 1957 edition.

Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

Short-Cut Math


Gerard W. Kelly - 1969
    Short-Cut Math is a concise, remarkably clear compendium of about 150 math short-cuts — timesaving tricks that provide faster, easier ways to add, subtract, multiply, and divide.By using the simple foolproof methods in this volume, you can double or triple your calculation speed — even if you always hated math in school. Here's a sampling of the amazingly effective techniques you will learn in minutes: Adding by 10 Groups; No-Carry Addition; Subtraction Without Borrowing; Multiplying by Aliquot Parts; Test for Divisibility by Odd and Even Numbers; Simplifying Dividends and Divisors; Fastest Way to Add or Subtract Any Pair of Fractions; Multiplying and Dividing with Mixed Numbers, and more.The short-cuts in this book require no special math ability. If you can do ordinary arithmetic, you will have no trouble with these methods. There are no complicated formulas or unfamiliar jargon — no long drills or exercises. For each problem, the author provides an explanation of the method and a step-by-step solution. Then the short-cut is applied, with a proof and an explanation of why it works.Students, teachers, businesspeople, accountants, bank tellers, check-out clerks — anyone who uses numbers and wishes to increase his or her speed and arithmetical agility, can benefit from the clear, easy-to-follow techniques given here.

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

Introductory Graph Theory


Gary Chartrand - 1984
    Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics — profusely illustrated — include: Mathematical Models, Elementary Concepts of Graph Theory, Transportation Problems, Connection Problems, Party Problems, Digraphs and Mathematical Models, Games and Puzzles, Graphs and Social Psychology, Planar Graphs and Coloring Problems, and Graphs and Other Mathematics. A useful Appendix covers Sets, Relations, Functions, and Proofs, and a section devoted to exercises — with answers, hints, and solutions — is especially valuable to anyone encountering graph theory for the first time. Undergraduate mathematics students at every level, puzzlists, and mathematical hobbyists will find well-organized coverage of the fundamentals of graph theory in this highly readable and thoroughly enjoyable book.

The Visual Display of Quantitative Information


Edward R. Tufte - 1983
    Theory and practice in the design of data graphics, 250 illustrations of the best (and a few of the worst) statistical graphics, with detailed analysis of how to display data for precise, effective, quick analysis. Design of the high-resolution displays, small multiples. Editing and improving graphics. The data-ink ratio. Time-series, relational graphics, data maps, multivariate designs. Detection of graphical deception: design variation vs. data variation. Sources of deception. Aesthetics and data graphical displays. This is the second edition of The Visual Display of Quantitative Information. Recently published, this new edition provides excellent color reproductions of the many graphics of William Playfair, adds color to other images, and includes all the changes and corrections accumulated during 17 printings of the first edition.

How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics


James D. Stein - 2008
    In the four main sections of the book, Stein tells the stories of the mathematical thinkers who discerned some of the most fundamental aspects of our universe. From their successes and failures, delusions, and even duels, the trajectories of their innovations—and their impact on society—are traced in this fascinating narrative. Quantum mechanics, space-time, chaos theory and the workings of complex systems, and the impossibility of a "perfect" democracy are all here. Stein's book is both mind-bending and practical, as he explains the best way for a salesman to plan a trip, examines why any thought you could have is imbedded in the number π , and—perhaps most importantly—answers one of the modern world's toughest questions: why the garage can never get your car repaired on time.Friendly, entertaining, and fun, How Math Explains the World is the first book by one of California's most popular math teachers, a veteran of both "math for poets" and Princeton's Institute for Advanced Studies. And it's perfect for any reader wanting to know how math makes both science and the world tick.

Introduction to Probability


Joseph K. Blitzstein - 2014
    The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo MCMC. Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Musimathics: The Mathematical Foundations of Music, Volume 1


Gareth Loy - 2006
    In "Musimathics," Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music -- a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science.In Volume 1, Loy presents the materials of music (notes, intervals, and scales); the physical properties of music (frequency, amplitude, duration, and timbre); the perception of music and sound (how we hear); and music composition. Calling himself "a composer seduced into mathematics," Loy provides answers to foundational questions about the mathematics of music accessibly yet rigorously. The examples given are all practical problems in music and audio.Additional material can be found at http: //www.musimathics.com.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.