Schaum's Outline of Linear Algebra


Seymour Lipschutz - 1968
    This guide provides explanations of eigenvalues, eigenvectors, linear transformations, linear equations, vectors, and matrices.

Symmetry


Hermann Weyl - 1952
    Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations--as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.

A Madman Dreams of Turing Machines


Janna Levin - 2006
    “They are both brilliantly original and outsiders,” the narrator tells us. “They are both besotted with mathematics. But for all their devotion, mathematics is indifferent, unaltered by any of their dramas . . . Against indifference, I want to tell their stories.” Which she does in a haunting, incantatory voice, the two lives unfolding in parallel narratives that overlap in the magnitude of each man’s achievement and demise: Gödel, delusional and paranoid, would starve himself to death; Turing, arrested for homosexual activities, would be driven to suicide. And they meet as well in the narrator’s mind, where facts are interwoven with her desire and determination to find meaning in the maze of their stories: two men devoted to truth of the highest abstract nature, yet unable to grasp the mundane truths of their own lives.A unique amalgam of luminous imagination and richly evoked historic character and event—A Madman Dreams of Turing Machines is a story about the pursuit of truth and its effect on the lives of two men. A story of genius and madness, incredible yet true.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

Schaum's Outline of Calculus


Frank Ayres Jr. - 1990
    They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators..

Numerical Linear Algebra


Lloyd N. Trefethen - 1997
    The clarity and eloquence of the presentation make it popular with teachers and students alike. The text aims to expand the reader's view of the field and to present standard material in a novel way. All of the most important topics in the field are covered with a fresh perspective, including iterative methods for systems of equations and eigenvalue problems and the underlying principles of conditioning and stability. Presentation is in the form of 40 lectures, which each focus on one or two central ideas. The unity between topics is emphasized throughout, with no risk of getting lost in details and technicalities. The book breaks with tradition by beginning with the QR factorization - an important and fresh idea for students, and the thread that connects most of the algorithms of numerical linear algebra.

The Big Switch: Rewiring the World, from Edison to Google


Nicholas Carr - 2008
    In a new chapter for this edition that brings the story up-to-date, Nicholas Carr revisits the dramatic new world being conjured from the circuits of the "World Wide Computer."

Is God a Mathematician?


Mario Livio - 2009
    Is God a Mathematician? investigates why mathematics is as powerful as it is. From ancient times to the present, scientists and philosophers have marveled at how such a seemingly abstract discipline could so perfectly explain the natural world. More than that—mathematics has often made predictions, for example, about subatomic particles or cosmic phenomena that were unknown at the time, but later were proven to be true. Is mathematics ultimately invented or discovered? If, as Einstein insisted, mathematics is “a product of human thought that is independent of experience,” how can it so accurately describe and even predict the world around us? Physicist and author Mario Livio brilliantly explores mathematical ideas from Pythagoras to the present day as he shows us how intriguing questions and ingenious answers have led to ever deeper insights into our world. This fascinating book will interest anyone curious about the human mind, the scientific world, and the relationship between them.

Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace


Leonard Mlodinow - 2001
    Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.

S. Chand's Principles Of Physics For XI


V.K. Mehta
    Simple langauge and systematic development of the subject matter. Emphasis on concepts and clear mathematical derivations

The Big Questions: Tackling the Problems of Philosophy with Ideas from Mathematics, Economics and Physics


Steven E. Landsburg - 2009
    Stimulating, illuminating, and always surprising, The Big Questions challenges readers to re-evaluate their most fundamental beliefs and reveals the relationship between the loftiest philosophical quests and our everyday lives.

From Eternity to Here: The Quest for the Ultimate Theory of Time


Sean Carroll - 2009
    In the hands of one of today’s hottest young physicists, that simple fact of breakfast becomes a doorway to understanding the Big Bang, the universe, and other universes, too. In From Eternity to Here, Sean Carroll argues that the arrow of time, pointing resolutely from the past to the future, owes its existence to conditions before the Big Bang itself, a period modern cosmology of which Einstein never dreamed. Increasingly, though, physicists are going out into realms that make the theory of relativity seem like child’s play. Carroll’s scenario is not only elegant, it’s laid out in the same easy-to- understand language that has made his group blog, Cosmic Variance, the most popular physics blog on the Net. From Eternity to Here uses ideas at the cutting edge of theoretical physics to explore how properties of spacetime before the Big Bang can explain the flow of time we experience in our everyday lives. Carroll suggests that we live in a baby universe, part of a large family of universes in which many of our siblings experience an arrow of time running in the opposite direction. It’s an ambitious, fascinating picture of the universe on an ultra-large scale, one that will captivate fans of popular physics blockbusters like Elegant Universe and A Brief History of Time.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Physics Part 1 Class - 10


Lakhmir Singh
    Salient Features: 1.Very short answer type questions (including true-false type questions and fill in the blanks type questions). 2.Short answer type questions. 3. Long answer type questions (or Essay type questions). 4. Multiple choice questions (MCQs) based on theory. 5. Questions based on high order thinking skills (HOTS). 6. Multiple choice questions (MCQs) based on practical skills in science.. 7. NCERT book questions and exercises (with answers). 8. Value based questions (with answers).