Book picks similar to
Solid Shape by Jan J. Koenderink
math
mathematics
textbooks
design
An Imaginary Tale: The Story of the Square Root of Minus One
Paul J. Nahin - 1998
Addressing readers with both a general and scholarly interest in mathematics, Nahin weaves into this narrative entertaining historical facts, mathematical discussions, and the application of complex numbers and functions to important problems.
The Man of Numbers: Fibonacci's Arithmetic Revolution
Keith Devlin - 2011
Devised in India in the 7th and 8th centuries and brought to North Africa by Muslim traders, the Hindu-Arabic system helped transform the West into the dominant force in science, technology, and commerce, leaving behind Muslim cultures which had long known it but had failed to see its potential.The young Italian, Leonardo of Pisa (better known today as Fibonacci), had learned the Hindu number system when he traveled to North Africa with his father, a customs agent. The book he created was Liber abbaci, the "Book of Calculation," and the revolution that followed its publication was enormous. Arithmetic made it possible for ordinary people to buy and sell goods, convert currencies, and keep accurate records of possessions more readily than ever before. Liber abbaci's publication led directly to large-scale international commerce and the scientific revolution of the Renaissance.Yet despite the ubiquity of his discoveries, Leonardo of Pisa remains an enigma. His name is best known today in association with an exercise in Liber abbaci whose solution gives rise to a sequence of numbers--the Fibonacci sequence--used by some to predict the rise and fall of financial markets, and evident in myriad biological structures.One of the great math popularizers of our time, Keith Devlin recreates the life and enduring legacy of an overlooked genius, and in the process makes clear how central numbers and mathematics are to our daily lives.
Shape: The Hidden Geometry of Information, Biology, Strategy, Democracy, and Everything Else
Jordan Ellenberg - 2021
For real.If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel.Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry," from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.
Professor Stewart's Cabinet of Mathematical Curiosities
Ian Stewart - 2008
This book reveals the most exhilarating oddities from Professor Stewart's legendary cabinet.Inside, you will find hidden gems of logic, geometry, and probability-like how to extract a cherry from a cocktail glass (harder than you think), a pop-up dodecahedron, and the real reason why you can't divide anything by zero. Scattered among these are keys to Fermat's last theorem, the Poincaréonjecture, chaos theory, and the P=NP problem (you'll win a million dollars if you solve it). You never know what enigmas you'll find in the Stewart cabinet, but they're sure to be clever, mind-expanding, and delightfully fun.
Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition
Steve Olson - 2004
Steve Olson followed the six 2001 contestants from the intense tryouts to the Olympiad’s nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical. In the process he provides fascinating insights into the science of intelligence and learning and, finally, the nature of genius. Brilliant, but defying all the math-nerd stereotypes, these teens want to excel in whatever piques their curiosity, and they are curious about almost everything — music, games, politics, sports, literature. One team member is ardent about both water polo and creative writing. Another plays four musical instruments. For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty. Though driven by the glory of winning this ultimate math contest, they are in many ways not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the the Olympiad, Olson sheds light on many questions, from why Americans feel so queasy about math, to why so few girls compete in the subject, to whether or not talent is innate. Inside the cavernous gym where the competition takes place, Count Down uncovers a fascinating subculture and its engaging, driven inhabitants.
Birth of a Theorem: A Mathematical Adventure
Cédric Villani - 2012
Birth of a Theorem is Villani’s own account of the years leading up to the award. It invites readers inside the mind of a great mathematician as he wrestles with the most important work of his career.But you don’t have to understand nonlinear Landau damping to love Birth of a Theorem. It doesn’t simplify or overexplain; rather, it invites readers into collaboration. Villani’s diaries, emails, and musings enmesh you in the process of discovery. You join him in unproductive lulls and late-night breakthroughs. You’re privy to the dining-hall conversations at the world’s greatest research institutions. Villani shares his favorite songs, his love of manga, and the imaginative stories he tells his children. In mathematics, as in any creative work, it is the thinker’s whole life that propels discovery—and with Birth of a Theorem, Cédric Villani welcomes you into his.
The Irrationals - A Story of the Numbers You Can′t Count On
Julian Havil - 2012
In The Irrationals , the first popular and comprehensive book on the subject, Julian Havil tells the story of irrational numbers and the mathematicians who have tackled their challenges, from antiquity to the twenty-first century. Along the way, he explains why irrational numbers are surprisingly difficult to define--and why so many questions still surround them. That definition seems so simple: they are numbers that cannot be expressed as a ratio of two integers, or that have decimal expansions that are neither infinite nor recurring. But, as The Irrationals shows, these are the real "complex" numbers, and they have an equally complex and intriguing history, from Euclid's famous proof that the square root of 2 is irrational to Roger Apry's proof of the irrationality of a number called Zeta(3), one of the greatest results of the twentieth century. In between, Havil explains other important results, such as the irrationality of e and pi. He also discusses the distinction between "ordinary" irrationals and transcendentals, as well as the appealing question of whether the decimal expansion of irrationals is "random". Fascinating and illuminating, this is a book for everyone who loves math and the history behind it.
Advanced Engineering Mathematics
K.A. Stroud - 2003
You proceed at your own rate and any difficulties you may encounter are resolved before you move on to the next topic. With a step-by-step programmed approach that is complemented by hundreds of worked examples and exercises, Advanced Engineering Mathematics is ideal as an on-the-job reference for professionals or as a self-study guide for students.Uses a unique technique-oriented approach that takes the reader through each topic step-by-step.Features a wealth of worked examples and progressively more challenging exercises.Contains Test Exercises, Learning Outcomes, Further Problems, and Can You? Checklists to guide and enhance learning and comprehension.Expanded coverage includes new chapters on Z Transforms, Fourier Transforms, Numerical Solutions of Partial Differential Equations, and more Complex Numbers.Includes a new chapter, Introduction to Invariant Linear Systems, and new material on difference equations integrated into the Z transforms chapter.
A Madman Dreams of Turing Machines
Janna Levin - 2006
“They are both brilliantly original and outsiders,” the narrator tells us. “They are both besotted with mathematics. But for all their devotion, mathematics is indifferent, unaltered by any of their dramas . . . Against indifference, I want to tell their stories.” Which she does in a haunting, incantatory voice, the two lives unfolding in parallel narratives that overlap in the magnitude of each man’s achievement and demise: Gödel, delusional and paranoid, would starve himself to death; Turing, arrested for homosexual activities, would be driven to suicide. And they meet as well in the narrator’s mind, where facts are interwoven with her desire and determination to find meaning in the maze of their stories: two men devoted to truth of the highest abstract nature, yet unable to grasp the mundane truths of their own lives.A unique amalgam of luminous imagination and richly evoked historic character and event—A Madman Dreams of Turing Machines is a story about the pursuit of truth and its effect on the lives of two men. A story of genius and madness, incredible yet true.
Linear Algebra and Its Applications
Gilbert Strang - 1976
While the mathematics is there, the effort is not all concentrated on proofs. Strang's emphasis is on understanding. He explains concepts, rather than deduces. This book is written in an informal and personal style and teaches real mathematics. The gears change in Chapter 2 as students reach the introduction of vector spaces. Throughout the book, the theory is motivated and reinforced by genuine applications, allowing pure mathematicians to teach applied mathematics.
Mathematics: From the Birth of Numbers
Jan Gullberg - 1997
The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, "for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge," it links mathematics to the humanities, linguistics, the natural sciences, and technology.Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous asides, ranging from limericks and tall stories to cartoons and decorative drawings.
Number Freak: From 1 to 200- The Hidden Language of Numbers Revealed
Derrick Niederman - 2009
Includes such gems as:? There are 42 eyes in a deck of cards, and 42 dots on a pair of dice ? In order to fill in a map so that neighboring regions never get the same color, one never needs more than four colors ? Hells Angels use the number 81 in their insignia because the initials H and A are the eighth and first numbers in the alphabet respectively
My Brain is Open: The Mathematical Journeys of Paul Erdős
Bruce Schechter - 1998
Hungarian-born Erdős believed that the meaning of life was to prove and conjecture. His work in the United States and all over the world has earned him the titles of the century's leading number theorist and the most prolific mathematician who ever lived. Erdős's important work has proved pivotal to the development of computer science, and his unique personality makes him an unforgettable character in the world of mathematics. Incapable of the smallest of household tasks and having no permanent home or job, he was sustained by the generosity of colleagues and by his own belief in the beauty of numbers. Witty and filled with the sort of mathematical puzzles that intrigued Erdős and continue to fascinate mathematicians today, My Brain Is Open is the story of this strange genius and a journey in his footsteps through the world of mathematics, where universal truths await discovery like hidden treasures and where brilliant proofs are poetry.
Introductory Statistics
Prem S. Mann - 2006
The realistic content of its examples and exercises, the clarity and brevity of its presentation, and the soundness of its pedagogical approach have received the highest remarks from both students and instructors. Now this bestseller is available in a new 6th edition.
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
John Derbyshire - 2003
Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world.