The Fabric of Reality: The Science of Parallel Universes--and Its Implications


David Deutsch - 1996
    Taken literally, it implies that there are many universes “parallel” to the one we see around us. This multiplicity of universes, according to Deutsch, turns out to be the key to achieving a new worldview, one which synthesizes the theories of evolution, computation, and knowledge with quantum physics. Considered jointly, these four strands of explanation reveal a unified fabric of reality that is both objective and comprehensible, the subject of this daring, challenging book. The Fabric of Reality explains and connects many topics at the leading edge of current research and thinking, such as quantum computers (which work by effectively collaborating with their counterparts in other universes), the physics of time travel, the comprehensibility of nature and the physical limits of virtual reality, the significance of human life, and the ultimate fate of the universe. Here, for scientist and layperson alike, for philosopher, science-fiction reader, biologist, and computer expert, is a startlingly complete and rational synthesis of disciplines, and a new, optimistic message about existence.

The Infinite Book: A Short Guide to the Boundless, Timeless and Endless


John D. Barrow - 2005
    It certainly is the strangest idea that humans have ever thought. Where did it come from and what is it telling us about our Universe? Can there actually be infinities? Is matter infinitely divisible into ever-smaller pieces? But infinity is also the place where things happen that don't. All manner of strange paradoxes and fantasies characterize an infinite universe. If our Universe is infinite then an infinite number of exact copies of you are, at this very moment, reading an identical sentence on an identical planet somewhere else in the Universe. Now Infinity is the darling of cutting edge research, the measuring stick used by physicists, cosmologists, and mathematicians to determine the accuracy of their theories. From the paradox of Zeno’s arrow to string theory, Cambridge professor John Barrow takes us on a grand tour of this most elusive of ideas and describes with clarifying subtlety how this subject has shaped, and continues to shape, our very sense of the world in which we live. The Infinite Book is a thoroughly entertaining and completely accessible account of the biggest subject of them all–infinity.

A Mathematician's Lament: How School Cheats Us Out of Our Most Fascinating and Imaginative Art Form


Paul Lockhart - 2009
    Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike and it will alter the way we think about math forever.Paul Lockhart, has taught mathematics at Brown University and UC Santa Cruz. Since 2000, he has dedicated himself to K-12 level students at St. Ann’s School in Brooklyn, New York.

A Mathematician's Apology


G.H. Hardy - 1940
    H. Hardy was one of this century's finest mathematical thinkers, renowned among his contemporaries as a 'real mathematician ... the purest of the pure'. He was also, as C. P. Snow recounts in his Foreword, 'unorthodox, eccentric, radical, ready to talk about anything'. This 'apology', written in 1940 as his mathematical powers were declining, offers a brilliant and engaging account of mathematics as very much more than a science; when it was first published, Graham Greene hailed it alongside Henry James's notebooks as 'the best account of what it was like to be a creative artist'. C. P. Snow's Foreword gives sympathetic and witty insights into Hardy's life, with its rich store of anecdotes concerning his collaboration with the brilliant Indian mathematician Ramanujan, his aphorisms and idiosyncrasies, and his passion for cricket. This is a unique account of the fascination of mathematics and of one of its most compelling exponents in modern times.

The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time


Jason Socrates Bardi - 2006
    But a dispute over its discovery sowed the seeds of discontent between two of the greatest scientific giants of all time - Sir Isaac Newton and Gottfried Wilhelm Leibniz." "Today Newton and Leibniz are generally considered the twin independent inventors of calculus. They are both credited with giving mathematics its greatest push forward since the time of the Greeks. Had they known each other under different circumstances, they might have been friends. But in their own lifetimes, the joint glory of calculus was not enough for either and each declared war against the other, openly and in secret." This long and bitter dispute has been swept under the carpet by historians - perhaps because it reveals Newton and Leibniz in their worst light - but The Calculus Wars tells the full story in narrative form for the first time. This history ultimately exposes how these twin mathematical giants were brilliant, proud, at times mad, and in the end completely human.

The Quantum Story: A History in 40 Moments


Jim Baggott - 2011
    From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it.Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents.Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it.This is quantum theory, and this book tells its story.Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes -- significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world.Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.

Linear Algebra and Its Applications


Gilbert Strang - 1976
    While the mathematics is there, the effort is not all concentrated on proofs. Strang's emphasis is on understanding. He explains concepts, rather than deduces. This book is written in an informal and personal style and teaches real mathematics. The gears change in Chapter 2 as students reach the introduction of vector spaces. Throughout the book, the theory is motivated and reinforced by genuine applications, allowing pure mathematicians to teach applied mathematics.

Einstein's Universe


Nigel Calder - 1979
    It far surpasses any previous explanation of Relativity for laypersons.

The Universe Within: From Quantum to Cosmos


Neil Turok - 2012
    Every technology we rely on today was created by the human mind, seeking to understand the universe around us. Scientific knowledge is our most precious possession, and our future will be shaped by the breakthroughs to come. In this personal and fascinating work, Neil Turok, Director of the Perimeter Institute for Theoretical Physics, explores the transformative scientific discoveries of the past three centuries -- from classical mechanics, to the nature of light, to the bizarre world of the quantum, and the evolution of the cosmos. Each new discovery has, over time, yielded new technologies causing paradigm shifts in the organization of society. Now, he argues, we are on the cusp of another major transformation: the coming quantum revolution that will supplant our current, dissatisfying digital age. Facing this brave new world, Turok calls for creatively re-inventing the way advanced knowledge is developed and shared, and opening access to the vast, untapped pools of intellectual talent in the developing world. Scientific research, training, and outreach are vital to our future economy, as well as powerful forces for peaceful global progress.

The Inflationary Universe: The Quest for a New Theory of Cosmic Origins


Alan Guth - 1997
    Guth’s startling theory—widely regarded as one of the most important contributions to science during the twentieth century—states that the big bang was set into motion by a period of hyper-rapid “inflation,” lasting only a billion-trillion-billionth of a second. The Inflationary Universe is the passionate story of one leading scientist’s effort to look behind the cosmic veil and explain how the universe began.

Understanding Physics: Volume 1: Motion, Sound, and Heat


Isaac Asimov - 1966
    These centuries gave birth to the basic concepts from which modern physics has evolved. In this first volume of his celebrated UNDERSTANDING PHYSICS, Isaac Asimov deals with this fascinating, momentous stage of scientific development with an authority and clarity that add further lustre to an eminent reputation. Demanding the minimum of specialized knowledge from his audience, he has produced a work that is the perfect supplement to the student’s formal textbook, as well as offering invaluable illumination to the general reader.

The Heart of Mathematics: An Invitation to Effective Thinking


Edward B. Burger - 1999
    In this new, innovative overview textbook, the authors put special emphasis on the deep ideas of mathematics, and present the subject through lively and entertaining examples, anecdotes, challenges and illustrations, all of which are designed to excite the student's interest. The underlying ideas include topics from number theory, infinity, geometry, topology, probability and chaos theory. Throughout the text, the authors stress that mathematics is an analytical way of thinking, one that can be brought to bear on problem solving and effective thinking in any field of study.

The Many Worlds of Hugh Everett III: Multiple Universes, Mutual Assured Destruction, and the Meltdown of a Nuclear Family


Peter Byrne - 2010
    Using Everett's unpublished papers (recently discovered in his son's basement) and dozens of interviews with his friends, colleagues, and surviving family members, Byrne paints, for the general reader, a detailed portrait of the genius who invented an astonishing way of describing our complex universe from the inside. Everett's mathematical model (called the "universal wave function") treats all possible events as "equally real," and concludes that countless copies of every person and thing exist in all possible configurations spread over an infinity of universes: many worlds. Afflicted by depression and addictions, Everett strove to bring rational order to the professional realms in which he played historically significant roles. In addition to his famous interpretation of quantum mechanics, Everett wrote a classic paper in game theory; created computer algorithms that revolutionized military operations research; and performed pioneering work in artificial intelligence for top secret government projects. He wrote the original software for targeting cities in a nuclear hot war; and he was one of the first scientists to recognize the danger of nuclear winter. As a Cold Warrior, he designed logical systems that modeled "rational" human and machine behaviors, and yet he was largely oblivious to the emotional damage his irrational personal behavior inflicted upon his family, lovers, and business partners. He died young, but left behind a fascinating record of his life, including correspondence with such philosophically inclined physicists as Niels Bohr, Norbert Wiener, and John Wheeler. These remarkable letters illuminate the long and often bitter struggle to explain the paradox of measurement at the heart of quantum physics. In recent years, Everett's solution to this mysterious problem-the existence of a universe of universes-has gained considerable traction in scientific circles, not as science fiction, but as an explanation of physical reality.

Fads and Fallacies in the Name of Science


Martin Gardner - 1952
    Not just a collection of anecdotes but a fair, reasoned appraisal of eccentric theory, it is unique in recognizing the scientific, philosophic, and sociological-psychological implications of the wave of pseudoscientific theories which periodically besets the world.To this second revised edition of a work formerly titled In the Name of Science, Martin Gardner has added new, up-to-date material to an already impressive account of hundreds of systematized vagaries. Here you will find discussions of hollow-earth fanatics like Symmes; Velikovsky and wandering planets; Hörbiger, Bellamy, and the theory of multiple moons; Charles Fort and the Fortean Society; dowsing and the other strange methods for finding water, ores, and oil. Also covered are such topics as naturopathy, iridiagnosis, zone therapy, food fads; Wilhelm Reich and orgone sex energy; L. Ron Hubbard and Dianetics; A. Korzybski and General Semantics. A new examination of Bridey Murphy is included in this edition, along with a new section on bibliographic reference material.

Plutonium: A History of the World's Most Dangerous Element


Jeremy Bernstein - 2007
    It took a year to accumulate enough so that one could actually see it. Now there is so much that we don't know what to do to get rid of it. We have created a monster.The history of plutonium is as strange as the element itself. When scientists began looking for it, they did so simply in the spirit of inquiry, not certain whether there were still spots to fill on the periodic table. But the discovery of fission made it clear that this still-hypothetical element would be more than just a scientific curiosity?it could be a powerful nuclear weapon.As it turned out, it is good for almost nothing else. Plutonium's nuclear potential put it at the heart of the World War II arms race?the Russians found out about it through espionage, the Germans through independent research, and everybody wanted some. Now, nearly everyone has some?the United States alone has about 47 metric tons?but it has almost no uses besides warmongering. How did the product of scientific curiosity become such a dangerous burden?In his new history of this complex and dangerous element, noted physicist Jeremy Bernstein describes the steps that were taken to transform plutonium from a laboratory novelty into the nuclear weapon that destroyed Nagasaki. This is the first book to weave together the many strands of plutonium's story, explaining not only the science but the people involved.