Math Geek: From Klein Bottles to Chaos Theory, a Guide to the Nerdiest Math Facts, Theorems, and Equations


Raphael Rosen - 2015
    From manhole covers to bubbles to subway maps, each page gives you a glimpse of the world through renowned mathematicians' eyes and reveals how their theorems and equations can be applied to nearly everything you encounter. Covering dozens of your favorite math topics, you'll find fascinating answers to questions like:How are the waiting times for buses determined?Why is Romanesco Broccoli so mesmerizing?How do you divide a cake evenly?Should you run or walk to avoid rain showers?Filled with compelling mathematical explanations, Math Geek sheds light on the incredible world of numbers hidden deep within your day-to-day life.

Gödel's Proof


Ernest Nagel - 1958
    Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.

The Moscow Puzzles: 359 Mathematical Recreations


Boris A. Kordemsky - 1954
    Since its first appearance in 1956 there have been eight editions as well as translations from the original Russian into Ukrainian, Estonian, Lettish, and Lithuanian. Almost a million copies of the Russian version alone have been sold.Part of the reason for the book's success is its marvelously varied assortment of brainteasers ranging from simple "catch" riddles to difficult problems (none, however, requiring advanced mathematics). Many of the puzzles will be new to Western readers, while some familiar problems have been clothed in new forms. Often the puzzles are presented in the form of charming stories that provide non-Russian readers with valuable insights into contemporary Russian life and customs. In addition, Martin Gardner, former editor of the Mathematical Games Department, Scientific American, has clarified and simplified the book to make it as easy as possible for an English-reading public to understand and enjoy. He has been careful, moreover, to retain nearly all the freshness, warmth, and humor of the original.Lavishly illustrated with over 400 clear diagrams and amusing sketches, this inexpensive edition of the first English translation will offer weeks or even months of stimulating entertainment. It belongs in the library of every puzzlist or lover of recreational mathematics.

Rock, Paper, Scissors: Game Theory in Everyday Life


Len Fisher - 2000
    Len Fisher turns his attention to the science of cooperation in his lively and thought-provoking book. Fisher shows how the modern science of game theory has helped biologists to understand the evolution of cooperation in nature, and investigates how we might apply those lessons to our own society. In a series of experiments that take him from the polite confines of an English dinner party to crowded supermarkets, congested Indian roads, and the wilds of outback Australia, not to mention baseball strategies and the intricacies of quantum mechanics, Fisher sheds light on the problem of global cooperation. The outcomes are sometimes hilarious, sometimes alarming, but always revealing. A witty romp through a serious science, Rock, Paper, Scissors will both teach and delight anyone interested in what it what it takes to get people to work together.

The Where, the Why, and the How: 75 Artists Illustrate Wondrous Mysteries of Science


Matt LaMothe - 2012
    Inside these pages some of the biggest (and smallest) mysteries of the natural world are explained in essays by real working scientists, which are then illustrated by artists given free rein to be as literal or as imaginative as they like. The result is a celebration of the wonder that inspires every new discovery. Featuring work by such contemporary luminaries as Lisa Congdon, Jen Corace, Neil Farber, Susie Ghahremani, Jeremyville, and many more, this is a work of scientific and artistic exploration to pique the interest of both the intellectually and imaginatively curious.

A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science


Michael S. Schneider - 1994
    This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.

What's Math Got to Do with It?: How Teachers and Parents Can Transform Mathematics Learning and Inspire Success


Jo Boaler - 2015
    Featuring all the important advice and suggestions in the original edition of What’s Math Got to Do with It?, this revised edition is now updated with new research on the brain and mathematics that is revolutionizing scientists’ understanding of learning and potential.As always Jo Boaler presents research findings through practical ideas that can be used in classrooms and homes. The new What’s Math Got to Do with It? prepares teachers and parents for the Common Core, shares Boaler’s work on ways to teach mathematics for a “growth mindset,” and includes a range of advice to inspire teachers and parents to give their students the best mathematical experience possible.

The Mathematical Experience


Philip J. Davis - 1980
    This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.

Sacred Number: The Secret Quality of Quantities


Miranda Lundy - 2005
    Beautifully illustrated with old engravings as well as contemporary imagery, Sacred Number introduces basic counting systems; significant numbers from major religious texts; the importance of astronomy, geometry, and music to number quality; how numbers affect architecture. Lundy explains why the ideas of Pythagoras still resonate, and she profiles each number from one to ten to show its distinct qualities: why, for example, the golden section is associated with five, and seven with the Virgin Mary.

The Mathematical Tourist: New & Updated Snapshots of Modern Mathematics


Ivars Peterson - 1988
    Now the journey continues in a new, updated edition that includes all the latest information on mathematical proofs, fractals, prime numbers, and chaos, as well as new material on* the relationship between mathematical knots and DNA* how computers based on quantum logic can significantly speed up the factoring of large composite numbers* the relationship between four-dimensional geometry and physical theories of the nature of matter* the application of cellular automata models to social questions and the peregrinations of virtual ants* a novel mathematical model of quasicrystals based on decagon-shaped tilesBlazing a trail through rows of austere symbols and dense lines of formulae, Peterson explores the central ideas behind the work of professional mathematicians-- how and where their pieces of the mathematical puzzle fit in, the sources of their ideas, their fountains of inspiration, and the images that carry them from one discovery to another.

How to Study for a Mathematics Degree


Lara Alcock - 2012
    Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. Some have difficulty adjusting to independent study and to learning from lectures. Other struggles, however, are more fundamental: the mathematics shifts in focus from calculation to proof, so students are expected to interact with it in different ways. These changes need not be mysterious - mathematics education research has revealed many insights into the adjustments that are necessary - but they are not obvious and they do need explaining.This no-nonsense book translates these research-based insights into practical advice for a student audience. It covers every aspect of studying for a mathematics degree, from the most abstract intellectual challenges to the everyday business of interacting with lecturers and making good use of study time. Part 1 provides an in-depth discussion of advanced mathematical thinking, and explains how a student will need to adapt and extend their existing skills in order to develop a good understanding of undergraduate mathematics. Part 2 covers study skills as these relate to the demands of a mathematics degree. It suggests practical approaches to learning from lectures and to studying for examinations while also allowing time for a fulfilling all-round university experience.The first subject-specific guide for students, this friendly, practical text will be essential reading for anyone studying mathematics at university.

Time Reborn: From the Crisis in Physics to the Future of the Universe


Lee Smolin - 2013
    You experience it passing every day when you watch clocks tick, bread toast, and children grow. But most physicists see things differently, from Newton to Einstein to today’s quantum theorists. For them, time isn’t real. You may think you experience time passing, but they say it’s just an illusion.Lee Smolin, author of the controversial bestseller The Trouble with Physics, argues this limited notion of time is holding physics back. It’s time for a major revolution in scientific thought. The reality of time could be the key to the next big breakthrough in theoretical physics.What if the laws of physics themselves were not timeless? What if they could evolve? Time Reborn offers a radical new approach to cosmology that embraces the reality of time and opens up a whole new universe of possibilties. There are few ideas that, like our notion of time, shape our thinking about literally everything, with major implications for physics and beyond—from climate change to the economic crisis. Smolin explains in lively and lucid prose how the true nature of time impacts our world.

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Game Changer: AlphaZero's Groundbreaking Chess Strategies and the Promise of AI


Matthew Sadler - 2019
    The artificial intelligence system, created by DeepMind, had been fed nothing but the rules of the Royal Game when it beat the world’s strongest chess engine in a prolonged match. The selection of ten games published in December 2017 created a worldwide sensation: how was it possible to play in such a brilliant and risky style and not lose a single game against an opponent of superhuman strength?For Game Changer, Matthew Sadler and Natasha Regan investigated more than two thousand previously unpublished games by AlphaZero. They also had unparalleled access to its team of developers and were offered a unique look ‘under the bonnet’ to grasp the depth and breadth of AlphaZero’s search. Sadler and Regan reveal its thinking process and tell the story of the human motivation and the techniques that created AlphaZero.Game Changer also presents a collection of lucidly explained chess games of astonishing quality. Both professionals and club players will improve their game by studying AlphaZero’s stunning discoveries in every field that matters: opening preparation, piece mobility, initiative, attacking techniques, long-term sacrifices and much more.The story of AlphaZero has a wider impact. Game Changer offers intriguing insights into the opportunities and horizons of Artificial Intelligence. Not just in solving games, but in providing solutions for a wide variety of challenges in society.With a foreword by former World Chess Champion Garry Kasparov and an introduction by DeepMind CEO Demis Hassabis.Matthew Sadler (1974) is a Grandmaster who twice won the British Championship and was awarded an individual Gold Medal at the 1996 Olympiad. He has authored several highly acclaimed books on chess and has been writing the famous ‘Sadler on Books’ column for New In Chess magazine for many years. Natasha Regan is a Women’s International Master from England who achieved a degree in mathematics from Cambridge University. Matthew Sadler and Natasha Regan won the English Chess Federation 2016 Book of the Award for their book Chess for Life.

The Road to Reality: A Complete Guide to the Laws of the Universe


Roger Penrose - 2004
    From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.