The Neanderthals: The History of the Extinct Humans Who Were Contemporaries of Homo Sapiens in Europe


Charles River Editors - 2018
    This seems to have been the case even from the first recognition of the Neanderthals as a species. The first Neanderthal fossil discovery was that of a child’s skull in Belgium in 1829, but it was badly damaged. Another would be discovered in 1856 in a limestone mine of the Neanderthal region of what is present-day Germany, and a skull with differing distinct traits (indicating a different species than the Neanderthals) would be discovered just over a decade later in southwestern France. The latter specimen would come to be recognized as an example of the species Homo Sapiens, and these anatomically modern humans arrived in Europe between 45,000 and 43,000 years ago, around the time the Neanderthals are believed to started going extinct. The Neanderthals are a member of the genus Homo just like Homo sapiens and share roughly 99.7% of their DNA with modern humans (Reynolds and Gallagher 2012). Both species even lived briefly during the same time in Eurasia. However, the Neanderthals evolved separately in Europe, away from modern humans, who evolved in Africa. Physically, the Neanderthal skeleton was much more robust, suggesting that there was more room for muscle attachment. However, while Neanderthals were stronger than modern humans, the average height of the Neanderthal male was shorter, standing at only about 5’5 tall. Other physical characteristics that set the Neanderthals apart from modern humans were certain skull traits. The skull in general was low and elongated, featuring a sloping forehead with an occipital bun (a bone projection at the back of the skull), whereas modern humans have a more vertical forehead with no occipital bun. The cranial capacity of the Neanderthal skull was also greater than the modern human at 1,500–1,740 cc, and it lacked a chin and had more circular eye orbits, in contrast to Homo sapiens, which have a chin and tend to feature more rectangular eye orbits (Wolpoff 1999). Despite these differences, the Neanderthals may have been recognizable enough to interact with Homo sapiens or even blend in with Homo sapiens for the thousands of years they lived together in Europe. The Neanderthals lived in Europe and Asia for nearly 200,000 years and thrived in these regions, but they went extinct between 40,000 and 30,000 years ago, around the same time that modern humans began arriving in Europe. This has prompted much speculation as to the nature of the interactions between Neanderthals and Homo sapiens, especially since some researchers believe they interacted with each other for over 5,000 years before the Neanderthals began going extinct at different times across Europe. One hypothesis is that Homo sapiens displaced the Neanderthals and were better suited for the environment, and it is obviously possible if not likely that these two groups had become competitors for food and other resources, with Homo sapiens being more successful in the end. If such close interactions were taking place, there is also a possibility that the relatively new-to-Europe Homo sapiens brought pathogens from Africa with them that were unknown to the Neanderthal’s immune system. A more recent example of this type of resulting interaction is the European expansion into the Americas, which brought diseases like smallpox that the natives of America had never experienced before, especially diseases resulting from the domestication of animals. It is possible that the domestication of the dog by Homo sapiens may have contributed in spreading foreign diseases among the Neanderthals.

A Brief Welcome to the Universe: A Pocket-Sized Tour


Neil deGrasse Tyson - 2021
    Bestselling authors and acclaimed astrophysicists Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott take readers on an unforgettable journey of exploration to reveal how our universe actually works.Propelling you from our home solar system to the outermost frontiers of space, this book builds your cosmic insight and perspective through a marvelously entertaining narrative. How do stars live and die? What are the prospects of intelligent life elsewhere in the universe? How did the universe begin? Why is it expanding and accelerating? Is our universe alone or part of an infinite multiverse? Exploring these and many other questions, this pocket-friendly book is your passport into the wonders of our evolving cosmos.

Solutions Manual For Introduction To Quantum Mechanics


David J. Griffiths
    

Semiconductor Optoelectronic Devices


Pallab Bhattacharya - 1993
    KEY TOPICS: Coverage begins with an optional review of key concepts--such as properties of compound semiconductor, quantum mechanics, semiconductor statistics, carrier transport properties, optical processes, and junction theory--then progress gradually through more advanced topics. The Second Edition has been both updated and expanded to include the recent developments in the field.

Microelectronics


Jacob Millman - 1979
    With pedagogical use of second color, it covers devices in one place so that circuit characteristics are developed early.

Solid State Physics: Structure and Properties of Materials


M.A. Wahab - 2005
    The First seven chapters deal with structure related aspects such as lattice and crystal structures, bonding, packing and diffusion of atoms followed by imperfections and lattice vibrations. Chapter eight deals mainly with experimental methods of determining structures of given materials. While the next nine chapters cover various physical properties of crystalline solids, the last chapter deals with the anisotropic properties of materials. This chapter has been added for benefit of readers to understand the crystal properties (anisotropic) in terms of some simple mathematical formulations such as tensor and matrix. New to the Second Edition: Chapter on: *Anisotropic Properties of Materials

Student Solutions Manual to Accompany Concepts of Modern Physics


Arthur Beiser - 2002
    The book is intended to be used in a one-semester course covering modern physics for students who have already had basic physics and calculus courses. The balance of the book leans more toward ideas than toward experimental methods and practical applications because the beginning student is better served by a conceptual framework than by a mass of details. The sequence of topics follows a logical, rather than strictly historical, order. Relativity and quantum ideas are considered first to provide a framework for understanding the physics of atoms and nuclei. The theory of the atom is then developed, and followed by a discussion of the properties of aggregates of atoms, which includes a look at statistical mechanics. Finally atomic nuclei and elementary particles are examined.

The Physics of NASCAR: How to Make Steel + Gas + Rubber = Speed


Diandra Leslie-Pelecky - 2008
    In this fast-paced investigation into the adrenaline-pumping world of NASCAR, a physicist with a passion uncovers what happens when the rubber hits the road and 800- horsepower vehicles compete at 190 miles per hour only inches from one another. Diandra Leslie-Pelecky reveals how and why drivers trust the engineering and science their teams literally build around them not only to get them across the finish line in first place, but also to keep them alive. Professor Leslie-Pelecky is a physicist in love with the sport’s beauty and power and is uniquely qualified to explain exactly how physics translates into winning races. Based on the author’s extensive access to race shops, pit crews, crew chiefs and mechanics, this book traces the life cycle of a race car from behind the scenes at top race shops to the track. The Physics of NASCAR takes readers right into the ultra competitive world of NASCAR, from the champion driver’s hot seat behind the detachable steering wheel to the New Zealander nicknamed Kiwi in charge of shocks for the No. 19 car. Diandra Leslie-Pelecky tells her story in terms anyone who drives a car--and maybe occasionally looks under the hood--can understand. How do drivers walk away from serious crashes? How can two cars travel faster together than either car can on its own? How do you dress for a 1800°F gasoline fire? In simple yet detailed, high-octane prose, this is the ultimate thrill ride for armchair speed demons, auto science buffs, and NASCAR fans at every level of interest. Readers, start your engines.

How The Universe Will End


Brian Cox - 2012
    

Electricity and Magnetism


Elisha Gray - 2010
    You may find it for free on the web. Purchase of the Kindle edition includes wireless delivery.

The God Particle


Richard Cox - 2005
    In the days that follow, a doctor performs miraculous surgery on Keeley, who wakes up to find that everything about his world has changed. He seems to sense things before they happen, and he thinks he’s capable of feats that are clearly impossible. It’s a strange and compelling new world for him, one he quickly realizes is also incredibly dangerous.Meanwhile at a $12 billion facility in hardscrabble North Texas, a super collider lies two hundred feet beneath the Earth’s surface. Leading a team of scientists, Mike McNair, a brilliant physicist, works to uncover one of the universe’s greatest secrets–a theoretical particle that binds the universe together, often called The God Particle. When his efforts are undermined by the man who has poured his own vast fortune into the project, McNair begins to suspect that something in his research has gone very, very wrong.Now, these two men are about to come together, battling mysteries of science and of the soul–and venturing to a realm beyond reason, beyond faith, perhaps even beyond life and death.

The Chilling Stars: A New Theory of Climate Change


Nigel Calder - 2003
    Their conclusion stems from Svensmark's research which has shown the previously unsuspected role that cosmic rays play in creating clouds. During the last 100 years cosmic rays became scarcer because unusually vigorous action by the Sun batted away many of them. Fewer cosmic rays meant fewer clouds--and a warmer world. The theory, simply put here but explained in fascinating detail, emerges at a time of intense public and political concern about climate change. Motivated only by their concern that science must be trustworthy, Svensmark and Calder invite their readers to put aside their preconceptions about manmade global warming and look afresh at the role of Nature in this hottest of world issues.

Semiconductor Device Fundamentals


Robert F. Pierret - 1995
    Problems are designed to progressively enhance MATLAB-use proficiency, so students need not be familiar with MATLAB at the start of your course. Program scripts that are answers to exercises in the text are available at no charge in electronic form (see Teaching Resources below). *Supplement and Review Mini-Chapters after each of the text's three parts contain an extensive review list of terms, test-like problem sets with answers, and detailed suggestions on supplemental reading to reinforce students' learning and help them prepare for exams. *Read-Only Chapters, strategically placed to provide a change of pace during the course, provide informative, yet enjoyable reading for students. *Measurement Details and Results samples offer students a realistic perspective on the seldom-perfect nature of device characteristics, contrary to the way they are often represented in introductory texts. Content Highlig

Instructor's Solutions Manual For Introduction To Classical Mechanics


Atam P. Arya
    Pays special attention to such topics of modern interest as nonlinear oscillators, central force motion, collisions in CMCS, and horizontal wind circulation. For physicists and astronomers.

Conversations with the Universe: How the World Speaks to Us


Simran Singh - 2013
    We are not alone, nor have we been creating life experiences on our own. There is a co-creative Universal Intelligence who is very much involved and continually seeking a dialogue. The problem is not so much the life challenges, but our own individual lack of communication with our co-creator. A conversation is happening all of the time, but we must open our eyes and ears to it. When we do, an opportunity to reconnect with the lighter side of life ensues. We do not have to get wrapped up in the heaviness. Instead of becoming overwhelmed by the issues at hand, we can become aware of the answers and solutions constantly presenting themselves. The Universe wants us to be joyful, have fun, and let go. The synchronicities, symbols, and messages are always intended to guide us. They are there to make us smile, to stop to remember there is more to life than the current object of our perceptions. Instead of having to work things out, we can play them out, yielding more aligned outcomes and a greater experience. When we are able to remember the vast connection that exists, the illusions we live become more and more apparent. Greater awareness of the messages and engagement in the dialogue allows us to laugh with the heavens at ourselves at life and our seriousness.