Schaum's Outline of Probability and Statistics


Murray R. Spiegel - 1975
    Its big-picture, calculus-based approach makes it an especially authoriatative reference for engineering and science majors. Now thoroughly update, this second edition includes vital new coverage of order statistics, best critical regions, likelihood ratio tests, and other key topics.

The Art and Craft of Problem Solving


Paul Zeitz - 1999
    Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.

An Introduction to Mathematics


Alfred North Whitehead - 1958
    This distinguished little book is a brisk introduction to a series of mathematical concepts, a history of their development, and a concise summary of how today's reader may use them.

Numerical Optimization


Jorge Nocedal - 2000
    One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Mathematical Methods in the Physical Sciences


Mary L. Boas - 1967
    Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.

General Relativity


Robert M. Wald - 1984
    The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement"Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today

Number Theory


George E. Andrews - 1994
    In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

Solid State Physics


Neil W. Ashcroft - 1976
    This book provides an introduction to the field of solid state physics for undergraduate students in physics, chemistry, engineering, and materials science.

Solving Mathematical Problems: A Personal Perspective


Terence Tao - 2006
    Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

Heard on The Street: Quantitative Questions from Wall Street Job Interviews


Timothy Falcon Crack - 2000
    The interviewers use the same questions year-after-year and here they are---with solutions! These questions come from all types of interviews (corporate finance, sales and trading, quant research, etc), but they are especially likely in quantitative capital markets job interviews. The questions come from all levels of interviews (undergrad, MBA, PhD), but they are especially likely if you have, or almost have, an MS or MBA. The latest edition includes over 120 non-quantitative actual interview questions, and a new section on interview technique---based partly on Dr. Crack's experiences interviewing candidates for the world's largest institutional asset manager. Dr. Crack has a PhD from MIT. He has won many teaching awards and has publications in the top academic, practitioner, and teaching journals in finance. He has degrees in Mathematics/Statistics, Finance, and Financial Economics and a diploma in Accounting/Finance. Dr. Crack taught at the university level for 20 years including four years as a front line teaching assistant for MBA students at MIT. He recently headed a quantitative active equity research team at the world's largest institutional money manager.

The Colossal Book of Short Puzzles and Problems


Martin Gardner - 2005
    His yearly gatherings of short and inventive problems were easily his most anticipated math columns. Loyal readers would savor the wit and elegance of his explorations in physics, probability, topology, and chess, among others. Grouped by subject and arrayed from easiest to hardest, the puzzles gathered here, which complement the lengthier, more involved problems in The Colossal Book of Mathematics, have been selected by Gardner for their illuminating; and often bewildering; solutions. Filled with over 300 illustrations, this new volume even contains nine new mathematical gems that Gardner, now ninety, has been gathering for the last decade. No amateur or expert math lover should be without this indispensable volume; a capstone to Gardner's seventy-year career.

A Book of Abstract Algebra


Charles C. Pinter - 1982
    Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.

The Classroom Chef: Sharpen Your Lessons, Season Your Classes, Make Math Meaninful


John Stevens - 2016
    You can use these ideas and methods as-is, or better yet, tweak them and create your own enticing educational meals. The message the authors share is that, with imagination and preparation, every teacher can be a Classroom Chef.

Introduction to Graph Theory


Richard J. Trudeau - 1994
    This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.