Book picks similar to
Remarks on the Foundations of Mathematics by Ludwig Wittgenstein
philosophy
mathematics
math
wittgenstein
The History of the Calculus and Its Conceptual Development
Carl B. Boyer - 1959
Early beginnings in antiquity, medieval contributions, and a century of anticipation lead up to a consideration of Newton and Leibniz, the period of indecison that followed them, and the final rigorous formulation that we know today.
This Book Needs No Title: A Budget of Living Paradoxes
Raymond M. Smullyan - 1980
From Simon & Schuster, This Book Needs No Title is Raymond Smullyan's budget of living paradoxes—the author of What is the Name of This Book?Including eighty paradoxes, logical labyrinths, and intriguing enigmas progress from light fables and fancies to challenging Zen exercises and a novella and probe the timeless questions of philosophy and life.
The Second Scientific American Book of Mathematical Puzzles and Diversions
Martin Gardner - 1901
. . . His Mathematical Games column in Scientific American is one of the few bridges over C. P. Snow's famous 'gulf of mutual incomprehension' that lies between the technical and literary cultures."—Time
Calculus
Gilbert Strang - 1991
The author has a direct style. His book presents detailed and intensive explanations. Many diagrams and key examples are used to aid understanding, as well as the application of calculus to physics and engineering and economics. The text is well organized, and it covers single variable and multivariable calculus in depth. An instructor's manual and student guide are available online at http: //ocw.mit.edu/ans7870/resources/Strang/....
Introduction to Logic: and to the Methodology of Deductive Sciences
Alfred Tarski - 1993
According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.
Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter - 1979
However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.
Number Freak: From 1 to 200- The Hidden Language of Numbers Revealed
Derrick Niederman - 2009
Includes such gems as:? There are 42 eyes in a deck of cards, and 42 dots on a pair of dice ? In order to fill in a map so that neighboring regions never get the same color, one never needs more than four colors ? Hells Angels use the number 81 in their insignia because the initials H and A are the eighth and first numbers in the alphabet respectively
Secrets of Mental Math: The Mathemagician's Guide to Lightning Calculation and Amazing Math Tricks
Arthur T. Benjamin - 1993
Get ready to amaze your friends—and yourself—with incredible calculations you never thought you could master, as renowned “mathemagician” Arthur Benjamin shares his techniques for lightning-quick calculations and amazing number tricks. This book will teach you to do math in your head faster than you ever thought possible, dramatically improve your memory for numbers, and—maybe for the first time—make mathematics fun.Yes, even you can learn to do seemingly complex equations in your head; all you need to learn are a few tricks. You’ll be able to quickly multiply and divide triple digits, compute with fractions, and determine squares, cubes, and roots without blinking an eye. No matter what your age or current math ability, Secrets of Mental Math will allow you to perform fantastic feats of the mind effortlessly. This is the math they never taught you in school.Also available as an eBook
Speech Acts: An Essay in the Philosophy of Language
John Rogers Searle - 1969
"This small but tightly packed volume is easily the most substantial discussion of speech acts since John Austin's How To Do Things With Words and one of the most important contributions to the philosophy of language in recent decades."-Philosophical Quarterly
Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being
George Lakoff - 2000
Abstract ideas, for the most part, arise via conceptual metaphor-metaphorical ideas projecting from the way we function in the everyday physical world. Where Mathematics Comes From argues that conceptual metaphor plays a central role in mathematical ideas within the cognitive unconscious-from arithmetic and algebra to sets and logic to infinity in all of its forms.
The Language of Mathematics: Making the Invisible Visible
Keith Devlin - 1998
And this language is mathematics." In The Language of Mathematics, award-winning author Keith Devlin reveals the vital role mathematics plays in our eternal quest to understand who we are and the world we live in. More than just the study of numbers, mathematics provides us with the eyes to recognize and describe the hidden patterns of life—patterns that exist in the physical, biological, and social worlds without, and the realm of ideas and thoughts within.Taking the reader on a wondrous journey through the invisible universe that surrounds us—a universe made visible by mathematics—Devlin shows us what keeps a jumbo jet in the air, explains how we can see and hear a football game on TV, allows us to predict the weather, the behavior of the stock market, and the outcome of elections. Microwave ovens, telephone cables, children's toys, pacemakers, automobiles, and computers—all operate on mathematical principles. Far from a dry and esoteric subject, mathematics is a rich and living part of our culture. An exploration of an often woefully misunderstood subject, The Language of Mathematics celebrates the simplicity, the precision, the purity, and the elegance of mathematics.
Being There: Putting Brain, Body, and World Together Again
Andy Clark - 1996
In treating cognition as problem solving, Andy Clark suggests, we may often abstract too far from the very body and world in which our brains evolved to guide us. Whereas the mental has been treated as a realm that is distinct from the body and the world, Clark forcefully attests that a key to understanding brains is to see them as controllers of embodied activity. From this paradigm shift he advances the construction of a cognitive science of the embodied mind.
The Little Book of Mathematical Principles, Theories, & Things
Robert Solomon - 2008
Rare Book
A Brief History of Mathematical Thought: Key concepts and where they come from
Luke Heaton - 2015
In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story.
The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations.
In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.
Naive Set Theory
Paul R. Halmos - 1960
This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.