Book picks similar to
Algebraic Topology by Edwin H. Spanier
mathematics
math
3-mathematics-part-b
it-wikipedia
The Fourth Dimension: A Guided Tour of the Higher Universes
Rudy Rucker - 1984
and now, The Fourth Dimension is this handy paperback. The result is a fantastic, enlightening, and mind-expanding reading experience. In text, pictures, and puzzles, master science and science fiction writer Rudy Rucker immerses his readers in an amazing exploration of a mysterious realm — a realm once seen only by mystics, physicists, and mathematicians. More accessible than Gödel, Escher, Bach and more playful than The Tao of Physics, Rucker's The Fourth Dimension is the most engaging tour of other dimensions since Flatland.David Povilaitis' 200 drawings illustrate Rucker's heady insights while dozens of puzzles and problems make the book a delight to the eye and mind. As Eileen Pollack has written in her rave review, The Fourth Dimension is "magical ... Its effects persist beyond its covers." That's because, like everything else in the fourth dimension, this is more than a book, it is a mental spaceship capable of grand tours of universes far beyond our own.
Euclid's Elements
Euclid
Heath's translation of the thirteen books of Euclid's Elements. In keeping with Green Lion's design commitment, diagrams have been placed on every spread for convenient reference while working through the proofs; running heads on every page indicate both Euclid's book number and proposition numbers for that page; and adequate space for notes is allowed between propositions and around diagrams. The all-new index has built into it a glossary of Euclid's Greek terms.Heath's translation has stood the test of time, and, as one done by a renowned scholar of ancient mathematics, it can be relied upon not to have inadvertantly introduced modern concepts or nomenclature. We have excised the voluminous historical and scholarly commentary that swells the Dover edition to three volumes and impedes classroom use of the original text. The single volume is not only more convenient, but less expensive as well.
How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)
New Scientist - 2018
No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.
Gödel's Proof
Ernest Nagel - 1958
Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.
Lectures on the Foundations of Mathematics, Cambridge 1939
Ludwig Wittgenstein - 1989
A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.
The Golden Ratio: The Divine Beauty of Mathematics
Gary B. Meisner - 2018
This gorgeous book features clear, entertaining, and enlightening commentary alongside stunning full-color illustrations by Venezuelan artist and architect Rafael Araujo. From the pyramids of Giza, to quasicrystals, to the proportions of the human face, the golden ratio has an infinite capacity to generate shapes with exquisite properties. With its lush format and layflat dimensions that closely approximate the golden ratio, this is the ultimate coffee table book for math enthusiasts, architects, designers, and fans of sacred geometry.
Solving Mathematical Problems: A Personal Perspective
Terence Tao - 2006
Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.
All the Mathematics You Missed
Thomas A. Garrity - 2001
This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.
My Best Mathematical and Logic Puzzles
Martin Gardner - 1994
He was especially careful to present new and unfamiliar puzzles that had not been included in such classic collections as those by Sam Loyd and Henry Dudeney. Later, these puzzles were published in book collections, incorporating reader feedback on alternate solutions or interesting generalizations.The present volume contains a rich selection of 70 of the best of these brain teasers, in some cases including references to new developments related to the puzzle. Now enthusiasts can challenge their solving skills and rattle their egos with such stimulating mind-benders as The Returning Explorer, The Mutilated Chessboard, Scrambled Box Tops, The Fork in the Road, Bronx vs. Brooklyn, Touching Cigarettes, and 64 other problems involving logic and basic math. Solutions are included.
The Calculus Lifesaver: All the Tools You Need to Excel at Calculus
Adrian Banner - 2007
The Calculus Lifesaver provides students with the essential tools they need not only to learn calculus, but to excel at it.All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of videotaped lectures. This study guide works as a supplement to any single-variable calculus course or textbook. Coupled with a selection of exercises, the book can also be used as a textbook in its own right. The style is informal, non-intimidating, and even entertaining, without sacrificing comprehensiveness. The author elaborates standard course material with scores of detailed examples that treat the reader to an inner monologue--the train of thought students should be following in order to solve the problem--providing the necessary reasoning as well as the solution. The book's emphasis is on building problem-solving skills. Examples range from easy to difficult and illustrate the in-depth presentation of theory.The Calculus Lifesaver combines ease of use and readability with the depth of content and mathematical rigor of the best calculus textbooks. It is an indispensable volume for any student seeking to master calculus.Serves as a companion to any single-variable calculus textbookInformal, entertaining, and not intimidatingInformative videos that follow the book--a full forty-eight hours of Banner's Princeton calculus-review course--is available at Adrian Banner lecturesMore than 475 examples (ranging from easy to hard) provide step-by-step reasoningTheorems and methods justified and connections made to actual practiceDifficult topics such as improper integrals and infinite series covered in detailTried and tested by students taking freshman calculus
Understanding Analysis
Stephen Abbott - 2000
The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.
Mathematics and the Imagination
Edward Kasner - 1940
But your pleasure and prowess at games, gambling, and other numerically related pursuits can be heightened with this entertaining volume, in which the authors offer a fascinating view of some of the lesser-known and more imaginative aspects of mathematics.A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.
Poincare's Prize: The Hundred-Year Quest to Solve One of Math's Greatest Puzzles
George G. Szpiro - 2007
Amazingly, the story unveiled in it is true.In the world of math, the Poincaré Conjecture was a holy grail. Decade after decade the theorem that informs how we understand the shape of the universe defied every effort to prove it. Now, after more than a century, an eccentric Russian recluse has found the solution to one of the seven greatest math problems of our time, earning the right to claim the first one-million-dollar Millennium math prize.George Szpiro begins his masterfully told story in 1904 when Frenchman Henri Poincaré formulated a conjecture about a seemingly simple problem. Imagine an ant crawling around on a large surface. How would it know whether the surface is a flat plane, a round sphere, or a bagel- shaped object? The ant would need to lift off into space to observe the object. How could you prove the shape was spherical without actually seeing it? Simply, this is what Poincaré sought to solve.In fact, Poincaré thought he had solved it back at the turn of the twentieth century, but soon realized his mistake. After four more years' work, he gave up. Across the generations from China to Texas, great minds stalked the solution in the wilds of higher dimensions. Among them was Grigory Perelman, a mysterious Russian who seems to have stepped out of a Dostoyevsky novel. Living in near poverty with his mother, he has refused all prizes and academic appointments, and rarely talks to anyone, including fellow mathematicians. It seemed he had lost the race in 2002, when the conjecture was widely but, again, falsely reported as solved. A year later, Perelman dropped three papers onto the Internet that not only proved the Poincaré Conjecture but enlightened the universe of higher dimensions, solving an array of even more mind-bending math with implications that will take an age to unravel. After years of review, his proof has just won him a Fields Medal--the 'Nobel of math'--awarded only once every four years. With no interest in fame, he refused to attend the ceremony, did not accept the medal, and stayed home to watch television.Perelman is a St. Petersburg hero, devoted to an ascetic life of the mind. The story of the enigma in the shape of space that he cracked is part history, part math, and a fascinating tale of the most abstract kind of creativity.
A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science
Michael S. Schneider - 1994
This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.
Trigonometric Delights
Eli Maor - 1998
It has a reputation as a dry and difficult subject, a glorified form of geometry complicated by tedious computation. In this book, Eli Maor draws on his remarkable talents as a guide to the world of numbers to dispel that view. Rejecting the usual arid descriptions of sine, cosine, and their trigonometric relatives, he brings the subject to life in a compelling blend of history, biography, and mathematics. He presents both a survey of the main elements of trigonometry and a unique account of its vital contribution to science and social development. Woven together in a tapestry of entertaining stories, scientific curiosities, and educational insights, the book more than lives up to the title Trigonometric Delights.Maor, whose previous books have demystified the concept of infinity and the unusual number "e," begins by examining the "proto-trigonometry" of the Egyptian pyramid builders. He shows how Greek astronomers developed the first true trigonometry. He traces the slow emergence of modern, analytical trigonometry, recounting its colorful origins in Renaissance Europe's quest for more accurate artillery, more precise clocks, and more pleasing musical instruments. Along the way, we see trigonometry at work in, for example, the struggle of the famous mapmaker Gerardus Mercator to represent the curved earth on a flat sheet of paper; we see how M. C. Escher used geometric progressions in his art; and we learn how the toy Spirograph uses epicycles and hypocycles.Maor also sketches the lives of some of the intriguing figures who have shaped four thousand years of trigonometric history. We meet, for instance, the Renaissance scholar Regiomontanus, who is rumored to have been poisoned for insulting a colleague, and Maria Agnesi, an eighteenth-century Italian genius who gave up mathematics to work with the poor--but not before she investigated a special curve that, due to mistranslation, bears the unfortunate name "the witch of Agnesi." The book is richly illustrated, including rare prints from the author's own collection. Trigonometric Delights will change forever our view of a once dreaded subject.