Designing Clinical Research


Stephen B. Hulley - 1988
    This edition incorporates current research methodology—including molecular and genetic clinical research—and offers an updated syllabus for conducting a clinical research workshop.Emphasis is on common sense as the main ingredient of good science. The book explains how to choose well-focused research questions and details the steps through all the elements of study design, data collection, quality assurance, and basic grant-writing. All chapters have been thoroughly revised, updated, and made more user-friendly.

Man with a Shattered World: The History of a Brain Wound


Alexander R. Luria - 1971
    R. Luria presents a compelling portrait of a man's heroic struggle to regain his mental faculties. A soldier named Zasetsky, wounded in the head at the battle of Smolensk in 1943, suddenly found himself in a frightening world: he could recall his childhood but not his recent past; half his field of vision had been destroyed; he had great difficulty speaking, reading, and writing.Much of the book consists of excerpts from Zasetsky's own diaries. Laboriously, he records his memories in order to reestablish his past and to affirm his existence as an intelligent being. Luria's comments and interpolations provide a valuable distillation of the theory and techniques that guided all of his research. His "digressions" are excellent brief introductions to the topic of brain structure and its relation to higher mental functions.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Ontological Relativity and Other Essays


Willard Van Orman Quine - 1969
    Intended to clarify the meaning of the philosophical doctrines propounded by Professor Quine in 'Word and Objects, ' the essays included herein both support and expand those doctrines.

The Signal and the Noise: Why So Many Predictions Fail—But Some Don't


Nate Silver - 2012
    He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of FiveThirtyEight.com. Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the "prediction paradox": The more humility we have about our ability to make predictions, the more successful we can be in planning for the future.In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good-or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary-and dangerous-science.Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise.

Science Research Writing for Non-Native Speakers of English


Hilary Glasman-Deal - 2009
    It can also be used by English speakers and is a practical, user-friendly book intended as a fast, do-it-yourself guide for those whose English language proficiency is above intermediate. The approach is based on material developed from teaching graduate students at Imperial College London and has been extensively piloted. The book guides the reader through the process of writing science research and will also help with writing a Master's or Doctoral thesis in English.Science writing is much easier than it looks because the structure and language are conventional. The aim of this book is to help the reader discover a template or model for science research writing and then to provide the grammar and vocabulary tools needed to operate that model. There are five units: Introduction, Methodology, Results, Discussion/Conclusion and Abstract. The reader develops a model for each section of the research article through sample texts and exercises; this is followed by a Grammar and Writing Skills section designed to respond to frequently-asked questions as well as a Vocabulary list including examples of how the words and phrases are to be used.

Introductory Statistics


Neil A. Weiss - 1987
    This book develops statistical thinking over rote drill and practice. The Nature of Statistics; Organizing Data; Descriptive Measures; Probability Concepts; Discrete Random Variables; The Normal Distribution; The Sampling Distribution of the Sample Menu; Confidence Intervals for One Population Mean; Hypothesis Tests for One Population Mean; Inferences for Two Population Means; Inferences for Population Standard Deviations; Inferences for Population Proportions; Chi-Square Procedures; Descriptive Methods in Regression and Correlation; Inferential Methods in Regression and Correlation; Analysis of Variance (ANOVA) For all readers interested in Introductory Statistics.

Evolution


Douglas J. Futuyma - 2005
    Douglas Futuyma presents an overview of current thinking on theories of evolution, aimed at an undergraduate audience.

Nabokov's Favorite Word Is Mauve: What the Numbers Reveal About the Classics, Bestsellers, and Our Own Writing


Ben Blatt - 2017
    There’s a famous piece of writing advice—offered by Ernest Hemingway, Stephen King, and myriad writers in between—not to use -ly adverbs like “quickly” or “fitfully.” It sounds like solid advice, but can we actually test it? If we were to count all the -ly adverbs these authors used in their careers, do they follow their own advice compared to other celebrated authors? What’s more, do great books in general—the classics and the bestsellers—share this trait?In Nabokov’s Favorite Word Is Mauve, statistician and journalist Ben Blatt brings big data to the literary canon, exploring the wealth of fun findings that remain hidden in the works of the world’s greatest writers. He assembles a database of thousands of books and hundreds of millions of words, and starts asking the questions that have intrigued curious word nerds and book lovers for generations: What are our favorite authors’ favorite words? Do men and women write differently? Are bestsellers getting dumber over time? Which bestselling writer uses the most clichés? What makes a great opening sentence? How can we judge a book by its cover? And which writerly advice is worth following or ignoring?

Artificial Intelligence: A Guide for Thinking Humans


Melanie Mitchell - 2019
    The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it.In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go.Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.

CK-12 Basic Physics


CK-12 Foundation - 2012
    Objects in harmonic motion have the ability to transfer some of their energy over large distances. Light Nature: This chapter covers the nature of light, polarization, and color.

The ARRL Extra Class License Manual for Ham Radio


H. Ward Silver - 2002
    Whenyou upgrade to Extra Class, you gain access to the entire Amateur Radio frequency spectrum. Ues this book to ace the top-level ham radio licensing exam. Our expert instruction will lead you through all of the knowledge you need to pass the exam: rules, specific operating skills and more advanced electronics theory.

The Canon: A Whirligig Tour of the Beautiful Basics of Science


Natalie Angier - 2007
    She draws on conversations with hundreds of the world's top scientists and on her own work as a Pulitzer Prize-winning writer for the New York Times to create a thoroughly entertaining guide to scientific literacy. Angier's gifts are on full display in The Canon, an ebullient celebration of science that stands to become a classic. The Canon is vital reading for anyone who wants to understand the great issues of our time -- from stem cells and bird flu to evolution and global warming. And it's for every parent who has ever panicked when a child asked how the earth was formed or what electricity is. Angier's sparkling prose and memorable metaphors bring the science to life, reigniting our own childhood delight in discovering how the world works. "Of course you should know about science," writes Angier, "for the same reason Dr. Seuss counsels his readers to sing with a Ying or play Ring the Gack: These things are fun and fun is good." The Canon is a joyride through the major scientific disciplines: physics, chemistry, biology, geology, and astronomy. Along the way, we learn what is actually happening when our ice cream melts or our coffee gets cold, what our liver cells do when we eat a caramel, why the horse is an example of evolution at work, and how we're all really made of stardust. It's Lewis Carroll meets Lewis Thomas -- a book that will enrapture, inspire, and enlighten.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.