A Guide To Econometrics


Peter E. Kennedy - 1979
    This overview has enabled students to make sense more easily of what instructors are doing when they produce proofs, theorems and formulas.

The 125 Best Brain Teasers of All Time: A Mind-Blowing Challenge of Math, Logic, and Wordplay


Marcel Danesi - 2018
    Collected here to keep your wits sharp, The Best Brain Teasers of All Time features the cleverest brain teasers from around the world and throughout history.The Best Brain Teasers of All Time gives you hours of fun-filled entertainment with brain teasers that develop your problem-solving skills in math, logic, and wordplay. Organized as an integrated challenge, these brain teasers build in momentum as they increase in difficulty from classic nursery rhymes to the riddle of the sphinx.The Best Brain Teasers of All Time puts your mind to the test with: 125 Brain Teasers that require no special skills to solve. Plus, each question comes with an optional clue in case you get stumped and a handy answer key in the back to test yourself or play with friends Brain Teasers for Every Level that cater to beginners and advanced masterminds alike, with brain teasers organized by level of difficulty to improve your skills as you move forward Hints of History that provide fun facts and background information for every brain teaser Get ready to sharpen your wit with every “aha” moment. The Best Brain Teasers of All Time is a go-to source for timeless fun and mind-blowing challenges.

Genetic Algorithms in Search, Optimization, and Machine Learning


David Edward Goldberg - 1989
    Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required. 0201157675B07092001

Writing for Computer Science


Justin Zobel - 1997
    For the most part the book is a discussion of good writing style and effective research strategies. Some of the material is accepted wisdom, some is controversial, and some is my opinions. Although the book is brief, it is designed to be comprehensive: some readers may be interested in exploring topics further, but for most readers this book should be suf?cient. The ?rst edition of this book was almost entirely about writing. This e- tion, partly in response to reader feedback and partly in response to issues that arose in my ownexperiences as an advisor, researcher, and referee, is also about research methods. Indeed, the two topics writing about and doing research are not clearly separated. It is a small step from asking how do I write? to askingwhatisitthatIwriteabout? As previously, the guidance on writing focuses on research, but much of the material is applicable to general technical and professional communication. Likewise, the guidance on the practice of research has broader lessons. A pr- titioner trying a new algorithm or explaining to colleagues why one solution is preferable to another should be con?dent that the arguments are built on robust foundations. And, while this edition has a stronger emphasis on research than did the ?rst, nothing has been deleted; there is additional material on research, but the guidance on writing has not been taken away."

Algorithm Design


Jon Kleinberg - 2005
    The book teaches a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.

Classical Mechanics


Herbert Goldstein - 1950
    KEY TOPICS: This classic book enables readers to make connections between classical and modern physics - an indispensable part of a physicist's education. In this new edition, Beams Medal winner Charles Poole and John Safko have updated the book to include the latest topics, applications, and notation, to reflect today's physics curriculum. They introduce readers to the increasingly important role that nonlinearities play in contemporary applications of classical mechanics. New numerical exercises help readers to develop skills in how to use computer techniques to solve problems in physics. Mathematical techniques are presented in detail so that the book remains fully accessible to readers who have not had an intermediate course in classical mechanics. MARKET: For college instructors and students.

Super Crunchers: Why Thinking-By-Numbers Is the New Way to Be Smart


Ian Ayres - 2007
    In this lively and groundbreaking new book, economist Ian Ayres shows how today's best and brightest organizations are analyzing massive databases at lightening speed to provide greater insights into human behavior. They are the Super Crunchers. From internet sites like Google and Amazon that know your tastes better than you do, to a physician's diagnosis and your child's education, to boardrooms and government agencies, this new breed of decision makers are calling the shots. And they are delivering staggeringly accurate results. How can a football coach evaluate a player without ever seeing him play? Want to know whether the price of an airline ticket will go up or down before you buy? How can a formula outpredict wine experts in determining the best vintages? Super crunchers have the answers. In this brave new world of equation versus expertise, Ayres shows us the benefits and risks, who loses and who wins, and how super crunching can be used to help, not manipulate us.Gone are the days of solely relying on intuition to make decisions. No businessperson, consumer, or student who wants to stay ahead of the curve should make another keystroke without reading Super Crunchers.

Fundamentals of Mathematical Statistics


S.C. Gupta
    Fundamentals Of Mathematical Statistics is written by SC Gupta and VK Kapoor and published by SULTAN CHAND & SONS, Delhi.

Social Network Analysis: Methods and Applications


Stanley Wasserman - 1994
    Social Network Analysis: Methods and Applications reviews and discusses methods for the analysis of social networks with a focus on applications of these methods to many substantive examples. As the first book to provide a comprehensive coverage of the methodology and applications of the field, this study is both a reference book and a textbook.

Asimov on Numbers


Isaac Asimov - 1978
    From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.

Using Multivariate Statistics


Barbara G. Tabachnick - 1983
    It givessyntax and output for accomplishing many analyses through the mostrecent releases of SAS, SPSS, and SYSTAT, some not available insoftware manuals. The book maintains its practical approach, stillfocusing on the benefits and limitations of applications of a techniqueto a data set -- when, why, and how to do it. Overall, it providesadvanced students with a timely and comprehensive introduction totoday's most commonly encountered statistical and multivariatetechniques, while assuming only a limited knowledge of higher-levelmathematics.

Tell Me The Odds: A 15 Page Introduction To Bayes Theorem


Scott Hartshorn - 2017
    Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.

A Mathematical Introduction to Logic


Herbert B. Enderton - 1972
    The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.