Book picks similar to
An Introduction to Probability and Inductive Logic by Ian Hacking
philosophy
logic
probability
philosophy-of-science
Philosophical Devices: Proofs, Probabilities, Possibilities, and Sets
David Papineau - 2012
Notions like denumerability, modal scope distinction, Bayesian conditionalization, and logical completeness are usually only elucidated deep within difficultspecialist texts. By offering simple explanations that by-pass much irrelevant and boring detail, Philosophical Devices is able to cover a wealth of material that is normally only available to specialists.The book contains four sections, each of three chapters. The first section is about sets and numbers, starting with the membership relation and ending with the generalized continuum hypothesis. The second is about analyticity, a prioricity, and necessity. The third is about probability, outliningthe difference between objective and subjective probability and exploring aspects of conditionalization and correlation. The fourth deals with metalogic, focusing on the contrast between syntax and semantics, and finishing with a sketch of Godel's theorem.Philosophical Devices will be useful for university students who have got past the foothills of philosophy and are starting to read more widely, but it does not assume any prior expertise. All the issues discussed are intrinsically interesting, and often downright fascinating. It can be read withpleasure and profit by anybody who is curious about the technical infrastructure of contemporary philosophy.
Introduction to Mathematical Philosophy
Bertrand Russell - 1918
In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.
Gödel's Proof
Ernest Nagel - 1958
Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.
An Introduction to Non-Classical Logic
Graham Priest - 2001
Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Philosophy of Logic
Willard Van Orman Quine - 1970
V. Quine presents logic as the product of two factors, truth and grammar--but argues against the doctrine that the logical truths are true because of grammar or language. Rather, in presenting a general theory of grammar and discussing the boundaries and possible extensions of logic, Quine argues that logic is not a mere matter of words.
Philosophy of Mathematics: Selected Readings
Paul Benacerraf - 1983
In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Proofs and Refutations: The Logic of Mathematical Discovery
Imre Lakatos - 1976
Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.
Lectures on the Foundations of Mathematics, Cambridge 1939
Ludwig Wittgenstein - 1989
A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.
Wholeness and the Implicate Order
David Bohm - 1980
Although deeply influenced by Einstein, he was also, more unusually for a scientist, inspired by mysticism. Indeed, in the 1970s and 1980s he made contact with both J. Krishnamurti and the Dalai Lama whose teachings helped shape his work. In both science and philosophy, Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular. In this classic work he develops a theory of quantum physics which treats the totality of existence as an unbroken whole. Writing clearly and without technical jargon, he makes complex ideas accessible to anyone interested in the nature of reality.
Probability Theory: The Logic of Science
E.T. Jaynes - 1999
It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.
Causality: Models, Reasoning, and Inference
Judea Pearl - 2000
It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable. Professor of Computer Science at the UCLA, Judea Pearl is the winner of the 2008 Benjamin Franklin Award in Computers and Cognitive Science.
The Logic of Scientific Discovery
Karl Popper - 1934
It remains the one of the most widely read books about science to come out of the twentieth century.(Note: the book was first published in 1934, in German, with the title Logik der Forschung. It was "reformulated" into English in 1959. See Wikipedia for details.)
Philosophy of Science: The Central Issues
Martin Curd - 1998
Combine this with thoughtful and thorough apparatus, and Philosophy of Science: The Central Issues is the most flexible and comprehensive collection ever created for undergraduate courses.
Language, Proof and Logic: Text and CD
Jon Barwise - 1999
The unique on-line grading services instantly grades solutions to hundred of computer exercises. It is specially devised to be used by philosophy instructors in a way that is useful to undergraduates of philosophy, computer science, mathematics, and linguistics.The book is a completely rewritten and much improved version of The Language of First-order Logic. Introductory material is presented in a more systematic and accessible fashion. Advanced chapters include proofs of soundness and completeness for propositional and predicate logic, as well as an accessible sketch of Godel's first incompleteness theorem. The book is appropriate for a wide range of courses, from first logic courses for undergraduates (philosophy, mathematics, and computer science) to a first graduate logic course.The package includes four pieces of software:Tarski's World 5.0, a new version of the popular program that teaches the basic first-order language and its semantics; Fitch, a natural deduction proof environment for giving and checking first-order proofs;Boole, a program that facilitates the construction and checking of truth tables and related notions (tautology, tautological consequence, etc.);Submit, a program that allows students to submit exercises done with the above programs to the Grade Grinder, the automatic grading service.Grade reports are returned to the student and, if requested, to the student's instructor, eliminating the need for tedious checking of homework. All programs are available for Windows, Macintosh and Linux systems.Instructors do not need to use the programs themselves in order to be able to take advantage of their pedagogical value. More about the software can be found at lpl.stanford.edu.The price of a new text/software package includes one Registration ID, which must be used each time work is submitted to the grading service. Once activated, the Registration ID is not transferable.