Book picks similar to
Theory Of Self Reproducing Automata by John von Neumann
science
computer-science
math
artificial-intelligence
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.
Computer Organization & Design: The Hardware/Software Interface
David A. Patterson - 1993
More importantly, this book provides a framework for thinking about computer organization and design that will enable the reader to continue the lifetime of learning necessary for staying at the forefront of this competitive discipline. --John Crawford Intel Fellow Director of Microprocessor Architecture, Intel The performance of software systems is dramatically affected by how well software designers understand the basic hardware technologies at work in a system. Similarly, hardware designers must understand the far reaching effects their design decisions have on software applications. For readers in either category, this classic introduction to the field provides a deep look into the computer. It demonstrates the relationship between the software and hardware and focuses on the foundational concepts that are the basis for current computer design. Using a distinctive learning by evolution approach the authors present each idea from its first principles, guiding readers through a series of worked examples that incrementally add more complex instructions until they ha
Networks: An Introduction
M.E.J. Newman - 2010
The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyze network data on a large scale, and the development of a variety of new theoretical tools has allowed us to extract new knowledge from many different kinds of networks.The study of networks is broadly interdisciplinary and important developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social sciences. This book brings together for the first time the most important breakthroughs in each of these fields and presents them in a coherent fashion, highlighting the strong interconnections between work in different areas.Subjects covered include the measurement and structure of networks in many branches of science, methods for analyzing network data, including methods developed in physics, statistics, and sociology, the fundamentals of graph theory, computer algorithms, and spectral methods, mathematical models of networks, including random graph models and generative models, and theories of dynamical processes taking place on networks.
Hackers & Painters: Big Ideas from the Computer Age
Paul Graham - 2004
Who are these people, what motivates them, and why should you care?Consider these facts: Everything around us is turning into computers. Your typewriter is gone, replaced by a computer. Your phone has turned into a computer. So has your camera. Soon your TV will. Your car was not only designed on computers, but has more processing power in it than a room-sized mainframe did in 1970. Letters, encyclopedias, newspapers, and even your local store are being replaced by the Internet.Hackers & Painters: Big Ideas from the Computer Age, by Paul Graham, explains this world and the motivations of the people who occupy it. In clear, thoughtful prose that draws on illuminating historical examples, Graham takes readers on an unflinching exploration into what he calls “an intellectual Wild West.”The ideas discussed in this book will have a powerful and lasting impact on how we think, how we work, how we develop technology, and how we live. Topics include the importance of beauty in software design, how to make wealth, heresy and free speech, the programming language renaissance, the open-source movement, digital design, internet startups, and more.
Computer Networking: A Top-Down Approach
James F. Kurose - 2000
Building on the successful top-down approach of previous editions, this fourth edition continues with an early emphasis on application-layer paradigms and application programming interfaces, encouraging a hands-on experience with protocols and networking concepts.
Pattern Classification
David G. Stork - 1973
Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Automate This: How Algorithms Came to Rule Our World
Christopher Steiner - 2012
It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What happens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others? Who knows—maybe there’s a bot learning to do your job this minute.
Mindstorms: Children, Computers, And Powerful Ideas
Seymour Papert - 1980
We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers.
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Linear Algebra and Its Applications [with CD-ROM]
David C. Lay - 1993
Clean Code: A Handbook of Agile Software Craftsmanship
Robert C. Martin - 2007
But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
An Introduction to General Systems Thinking
Gerald M. Weinberg - 1975
Used in university courses and professional seminars all over the world, the text has proven its ability to open minds and sharpen thinking.Originally published in 1975 and reprinted more than twenty times over a quarter century -- and now available for the first time from Dorset House Publishing -- the text uses clear writing and basic algebraic principles to explore new approaches to projects, products, organizations, and virtually any kind of system.Scientists, engineers, organization leaders, managers, doctors, students, and thinkers of all disciplines can use this book to dispel the mental fog that clouds problem-solving. As author Gerald M. Weinberg writes in the new preface to the Silver Anniversary Edition, "I havent changed my conviction that most people dont think nearly as well as they could had they been taught some principles of thinking.Now an award-winning author of nearly forty books spanning the entire software development life cycle, Weinberg had already acquired extensive experience as a programmer, manager, university professor, and consultant when this book was originally published.With helpful illustrations, numerous end-of-chapter exercises, and an appendix on a mathematical notation used in problem-solving, An Introduction to General Systems Thinking may be your most powerful tool in working with problems, systems, and solutions.
Operating System Concepts
Abraham Silberschatz - 1985
By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.