Book picks similar to
Higher Engineering Mathematics by B.V. Ramana
maths
engineering
math
jhii
Elements of Programming
Alexander Stepanov - 2009
And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.
String, Straightedge, and Shadow: The Story of Geometry
Julia E. Diggins - 1965
Julia Diggins masterfully recreates the atmosphere of ancient times, when men, using three simple tools, the string, the straightedge, and the shadow, discovered the basic principles and constructions of elementary geometry. Her book reveals how these discoveries related to the early civilizations of Mesopotamia, Egypt, and Greece.The fabric of the story is woven out of archeological and historical records and legends about the major men of mathematics. By reconstructing the events as they might have happened, Diggins enables the attentive reader to easily follow the pattern of reasoning that leads to an ingenious proof of the Pythagorean theorem, an appreciation of the significance of the Golden Mean in art and architecture, and the construction of the five regular solids.Out of print for 34 years, Julia Diggins' classic book is back and is a must-read for middle school students or for parents helping their children through their first geometry course. You will be fascinated with the graphic illustrations and written depiction of how the knowledge and wisdom of so many cultures helped shape our civilization today. This book is popular with teachers and parents who use Jamie York's Making Math Meaningful curriculum books.
An Introduction to Non-Classical Logic
Graham Priest - 2001
Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Thomas' Calculus, Early Transcendentals, Media Upgrade
George B. Thomas Jr. - 2002
This book offers a full range of exercises, a precise and conceptual presentation, and a new media package designed specifically to meet the needs of today's readers. The exercises gradually increase in difficulty, helping readers learn to generalize and apply the concepts. The refined table of contents introduces the exponential, logarithmic, and trigonometric functions in Chapter 7 of the text.KEY TOPICS Functions, Limits and Continuity, Differentiation, Applications of Derivatives, Integration, Applications of Definite Integrals, Integrals and Transcendental Functions, Techniques of Integration, Further Applications of Integration, Conic Sections and Polar Coordinates, Infinite Sequences and Series, Vectors and the Geometry of Space, Vector-Valued Functions and Motion in Space, Partial Derivatives, Multiple Integrals, Integration in Vector Fields.MARKET For all readers interested in Calculus.
The Best of Times: Math Strategies that Multiply
Greg Tang - 2002
In simple rhymes, Tang explains the fundamentals of how each number from 1 to 10 works. His poem "Four Eyes," for example, explains how any number multiplied by four can be merely doubled twice: "Four is very fast to do, when you multiply by 2. Here's a little good advice -- please just always double twice!" He then goes on to explain: "What is 4x4? It's 4 doubled twice. Double once: 4+4=8. Double twice: 8+8=16," and he even provides extra challenge questions below. All of his poems and problems are just as easy (e.g., a number times 6 is tripled, then doubled; a number times 9 is multiplied by 10, then subtracted once), and the book is rounded out with full practice tables in the back.Tang provides children with an excellent lesson, helping them make sense of daunting math without a bombardment of complicated rules. Kids will cheer his winsome presentation, which is wonderfully complemented by Harry Brigg's computer illustrations of animals cavorting around and having fun. Both practical and pleasing, The Best of Times is math that'll help make homework and tests a breeze. Matt Warner
Mathematics: Is God Silent?
James Nickel - 2001
The addition of this book is a must for all upper-level Christian school curricula and for college students and adults interested in math or related fields of science and religion. It will serve as a solid refutation for the claim, often made in court, that mathematics is one subject, which cannot be taught from a distinctively Biblical perspective.
Probability For Dummies
Deborah J. Rumsey - 2006
This book helps you even the odds. Using easy-to-understand explanations and examples, it demystifies probability -- and even offers savvy tips to boost your chances of gambling success Discover how to* Conquer combinations and permutations* Understand probability models from binomial to exponential* Make good decisions using probability* Play the odds in poker, roulette, and other games
The Compleat Strategyst: Being a Primer on the Theory of Games of Strategy
J.D. Williams - 1965
D. Williams wrote this entertaining, witty introduction for the nonscientist, game theory was still a somewhat mysterious subject familiar to very few scientists beyond those researchers, like himself, working for the military. Now, over thirty years after its original publication as a Rand Corporation research study, his light-hearted though thoroughly effective primer is the recognized classic introduction to an increasingly applicable discipline. Used by amateurs, professionals, and students throughout the world in the classroom, on the job, and for personal amusement, the book has been through ten printings, and has been translated into at least five languages (including Russian and Japanese).Revised, updated, and available for the first time in an inexpensive paperback edition, The Compleat Strategyst is a highly entertaining text essential for anyone interested in this provocative and engaging area of modern mathematics. In fully illustrated chapters complete with everyday examples and word problems, Williams offers readers a working understanding of the possible methods for selecting strategies in a variety of situations, simple to complex. With just a basic understanding of arithmetic, anyone can grasp all necessary aspects of two-, three-, four-, and larger strategy games with two or more sets of inimical interests and a limitless array of zero-sum payoffs.As research and study continues not only in this new discipline but in the related areas of statistics, probability and behavioral science, understanding of games, decision making, and the development of strategies will be increasingly important. In the areas of economics, sociology, politics, and the military, game theory is sure to have an even wider impact. For students and amateurs fascinated by game theory's implications there is no better, immediately applicable, or more entertaining introduction to the subject than this engaging text by the late J. D. Williams, Professor of Mathematics at Princeton University and a member of the Research Council of The Rand Corporation.
Poetry of the Universe
Robert Osserman - 1995
40 illustrations throughout.
This Book Needs No Title: A Budget of Living Paradoxes
Raymond M. Smullyan - 1980
From Simon & Schuster, This Book Needs No Title is Raymond Smullyan's budget of living paradoxes—the author of What is the Name of This Book?Including eighty paradoxes, logical labyrinths, and intriguing enigmas progress from light fables and fancies to challenging Zen exercises and a novella and probe the timeless questions of philosophy and life.
A Mathematician Plays The Stock Market
John Allen Paulos - 2003
In A Mathematician Plays the Stock Market , best-selling author John Allen Paulos employs his trademark stories, vignettes, paradoxes, and puzzles to address every thinking reader's curiosity about the market -- Is it efficient? Is it random? Is there anything to technical analysis, fundamental analysis, and other supposedly time-tested methods of picking stocks? How can one quantify risk? What are the most common scams? Are there any approaches to investing that truly outperform the major indexes? But Paulos's tour through the irrational exuberance of market mathematics doesn't end there. An unrequited (and financially disastrous) love affair with WorldCom leads Paulos to question some cherished ideas of personal finance. He explains why "data mining" is a self-fulfilling belief, why "momentum investing" is nothing more than herd behavior with a lot of mathematical jargon added, why the ever-popular Elliot Wave Theory cannot be correct, and why you should take Warren Buffet's "fundamental analysis" with a grain of salt. Like Burton Malkiel's A Random Walk Down Wall Street , this clever and illuminating book is for anyone, investor or not, who follows the markets -- or knows someone who does.
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
Introduction to Mathematical Thinking
Keith Devlin - 2012
This is not the same as “doing math.” The latter usually involves the application of formulas, procedures, and symbolic manipulations; mathematical thinking is a powerful way of thinking about things in the world -- logically, analytically, quantitatively, and with precision. It is not a natural way of thinking, but it can be learned. Mathematicians, scientists, and engineers need to “do math,” and it takes many years of college-level education to learn all that is required. Mathematical thinking is valuable to everyone, and can be mastered in about six weeks by anyone who has completed high school mathematics. Mathematical thinking does not have to be about mathematics at all, but parts of mathematics provide the ideal target domain to learn how to think that way, and that is the approach taken by this short but valuable book. The book is written primarily for first and second year students of science, technology, engineering, and mathematics (STEM) at colleges and universities, and for high school students intending to study a STEM subject at university. Many students encounter difficulty going from high school math to college-level mathematics. Even if they did well at math in school, most are knocked off course for a while by the shift in emphasis, from the K-12 focus on mastering procedures to the “mathematical thinking” characteristic of much university mathematics. Though the majority survive the transition, many do not. To help them make the shift, colleges and universities often have a “transition course.” This book could serve as a textbook or a supplementary source for such a course. Because of the widespread applicability of mathematical thinking, however, the book has been kept short and written in an engaging style, to make it accessible to anyone who seeks to extend and improve their analytic thinking skills. Going beyond a basic grasp of analytic thinking that everyone can benefit from, the STEM student who truly masters mathematical thinking will find that college-level mathematics goes from being confusing, frustrating, and at times seemingly impossible, to making sense and being hard but doable. Dr. Keith Devlin is a professional mathematician at Stanford University and the author of 31 previous books and over 80 research papers. His books have earned him many awards, including the Pythagoras Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. He is known to millions of NPR listeners as “the Math Guy” on Weekend Edition with Scott Simon. He writes a popular monthly blog “Devlin’s Angle” for the Mathematical Association of America, another blog under the name “profkeithdevlin”, and also blogs on various topics for the Huffington Post.
Mathematical Analysis
Tom M. Apostol - 1957
It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.