A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity


Peter Collier - 2012
    This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes.Understand even the basics of Einstein's amazing theory and the world will never seem the same again. ContentsPrefaceIntroduction1 Foundation mathematics2 Newtonian mechanics3 Special relativity4 Introducing the manifold5 Scalars, vectors, one-forms and tensors6 More on curvature7 General relativity8 The Newtonian limit9 The Schwarzschild metric10 Schwarzschild black holes11 Cosmology12 Gravitational wavesAppendix: The Riemann curvature tensorBibliographyAcknowledgementsJanuary 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.

Analytical Mechanics


Grant R. Fowles - 1970
    This book includes discussions which aid in student understanding of theoretical material through the use of specific cases. It is suitable for undergraduate Mechanics course.

Quantum Electrodynamics


Richard P. Feynman - 1962
    Designed for the student of experimental physics who does not intend to take more advanced graduate courses in theoretical physics, the material consists of notes on the third of a three-semester course given at the California Institute of Technology.

A First Course in General Relativity


Bernard Schutz - 1985
    Development of the concept of general relativity and its associated mathematics, from a minimum of prerequisites, leads to an in-depth physical understanding of the theory and its most important applications.

Gravity


George Gamow - 1962
    In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own drawings, both technical and fanciful, this remarkably reader-friendly book focuses particularly on Newton, who developed the mathematical system known today as the differential and integral calculus. Readers averse to equations can skip the discussion of the elementary principles of calculus and still achieve a highly satisfactory grasp of a fascinating subject.Starting with a chapter on Galileo’s pioneering work, this volume devotes six chapters to Newton's ideas and other subsequent developments and one chapter to Einstein, with a concluding chapter on post-Einsteinian speculations concerning the relationship between gravity and other physical phenomena, such as electromagnetic fields.

Introduction to Elementary Particles


David J. Griffiths - 1987
    Using a lively, informal writing style, the author strikes a balance between quantitative rigor and intuitive understanding. The first chapter provides a detailed historical introduction to the subject. Subsequent chapters offer a consistent and modern presentation, covering the quark model, Feynman diagrams, quantum electrodynamics, and gauge theories. A clear introduction to the Feynman rules, using a simple model, helps readers learn the calculational techniques without the complications of spin. And an accessible treatment of QED shows how to evaluate tree-level diagrams. Contains an abundance of worked examples and many end-of-chapter problems.

Introductory Astronomy and Astrophysics


Michael Zeilik - 1987
    It has an algebra and trigonometry prerequisite, but calculus is preferred.

Symmetry and the Beautiful Universe


Leon M. Lederman - 2004
    They write f

Principles of Quantum Mechanics


Ramamurti Shankar - 1980
    The postulates of quantum mechanics and the mathematical underpinnings are discussed in a clear, succinct manner." (American Scientist)"No matter how gently one introduces students to the concept of Dirac's bras and kets, many are turned off. Shankar attacks the problem head-on in the first chapter, and in a very informal style suggests that there is nothing to be frightened of." (Physics Bulletin)Reviews of the Second Edition:"This massive text of 700 and odd pages has indeed an excellent get-up, is very verbal and expressive, and has extensively worked out calculational details---all just right for a first course. The style is conversational, more like a corridor talk or lecture notes, though arranged as a text. ... It would be particularly useful to beginning students and those in allied areas like quantum chemistry." (Mathematical Reviews)R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include:- Clear, accessible treatment of underlying mathematics- A review of Newtonian, Lagrangian, and Hamiltonian mechanics- Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates- Unsurpassed coverage of path integrals and their relevance in contemporary physicsThe requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book's self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.

A First Course in String Theory


Barton Zwiebach - 2004
    The first part deals with basic ideas, reviewing special relativity and electromagnetism while introducing the concept of extra dimensions. D-branes and the classical dynamics of relativistic strings are discussed next, and the quantization of open and closed bosonic strings in the light-cone gauge, along with a brief introduction to superstrings. The second part begins with a detailed study of D-branes followed by string thermodynamics. It discusses possible physical applications, and covers T-duality of open and closed strings, electromagnetic fields on D-branes, Born/Infeld electrodynamics, covariant string quantization and string interactions. Primarily aimed as a textbook for advanced undergraduate and beginning graduate courses, it will also be ideal for a wide range of scientists and mathematicians who are curious about string theory.

Spacetime and Geometry: An Introduction to General Relativity


Sean Carroll - 2003
    With an accessible and lively writing style, it introduces modern techniques to what can often be a formal and intimidating subject. Readers are led from the physics of flat spacetime (special relativity), through the intricacies of differential geometry and Einstein's equations, and on to exciting applications such as black holes, gravitational radiation, and cosmology.

Modern Quantum Mechanics


J.J. Sakurai - 1985
    DLC: Quantum theory.

Quantum Mechanics: The Theoretical Minimum


Leonard Susskind - 2014
    Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course.An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity


Steven Weinberg - 1972
    Unique in basing relativity on the Principle of Equivalence of Gravitation and Inertia over Riemannian geometry, this book explores relativity experiments and observational cosmology to provide a sound foundation upon which analyses can be made. Covering special and general relativity, tensor analysis, gravitation, curvature, and more, this book provides an engaging, insightful introduction to the forces that shape the universe.

General Relativity


Robert M. Wald - 1984
    The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement"Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today