Book picks similar to
Excel 2013 Formulas by John Walkenbach


reference
skill-self-improvement
technology
work

Data Science at the Command Line: Facing the Future with Time-Tested Tools


Jeroen Janssens - 2014
    You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

The New Edge in Knowledge: How Knowledge Management Is Changing the Way We Do Business


Carla O'dell - 2011
    Plus, the book is filled with real-world examples - the case studies and snapshots of how best practice companies are achieving success with knowledge management.Praise for The New Edge in Knowledge: How Knowledge Management is Changing the Way We Do Business"You may think you know knowledge management, but this is new--how knowledge initiatives can incorporate social media, mobile technologies, and learning, for example. This book integrates the new knowledge management with the best of the old, such as communities of practice and measurement. KM still matters, and this book tells you why." --Thomas H. Davenport, President's Distinguished Professor of IT and Management, Babson CollegeOver the last decade, knowledge management has emerged as a key success factor for the modern corporation, driven by tremendous advances in business analytics. This book studies the best practices in knowledge management and how leadership companies are applying them today. --Virginia M. Rometty, Senior Vice President and Group Executive Sales, Marketing and Strategy, IBM"APQC has been on the leading edge of knowledge management for almost two decades. O'Dell and Hubert have captured those best practices and created a road map to transform the way people work. Reap the benefits of their experience." --C. Jackson Grayson, Chairman and Founder, APQC and co-author of If Only We Knew What We Know"The New Edge in Knowledge is a useful how-to manual that takes best practice sharing and organizational capability building to the next level: Web 2.0, social networking, mobility, and communities of practice. National and international examples show how companies can create strategic alignment and systematic management to transfer knowledge rapidly and effectively." --Rosabeth Moss Kanter, Harvard Business School professor and author of SuperCorp: How Vanguard Companies Create Innovation, Profits, Growth, and Social GoodWhat has made our KM program strong is sticking to the fundamentals-- that's exactly what this book outlines. It provides trusted advisor guidance on how any company or organization can take the concrete steps to create and implement a world class KM strategy. --Dan Ranta, Director of Knowledge Sharing, ConocoPhillips"Carla O'Dell and Cindy Hubert have written an amazingly down to earth, useful and practical book on knowledge management and its importance to modern business. Starting with the distinction between information and knowledge, they provide a viewpoint that leaves IT in the dust. Read it to prepare for tomorrow's world!" --A. Gary Shilling, President, A. Gary Shilling & Co., Inc."A practical business approach to knowledge management, this book covers KM's value proposition for any organization, provides proven strategies and approaches to make it work, shares how to measure KM's impact, and illustrates high level knowledge sharing with wonderful case studies. Well done!" --Jane Dysart, Conference Chair, KMWorld & Partner, Dysart & Jones Associates"This book is a tour de force in the field of knowledge management. Read every single page and learn about best practices from the leading firms around the world. All of this and more from the company that leads the way in the field: APQC. I highly recommend it for your bookshelf." --Dr. Nick Bontis, Director, Institute for Intellectual Capital Research"Food for thought from two of the pioneers. Carla O'Dell and Cindy Hubert have been in the trenches with many of the organizations that have succeeded in leveraging KM for business benefit. They recognized early the symbiotic relationship between knowledge flow and work flow and have guided practitioners in the quest to optimize and streamline both." -- Reid Smith, Enterprise Content Management Director, Marathon Oil Company"Carla O'Dell and Cindy Hubert take knowledge management from vague idea to strategic enabler. In so doing, they clear up the not only the whats, but the whys and the hows. This book establishes knowledge management as an organizational discipline. The authors offer a straightforward set of execution steps, coaching readers on how to launch their own knowledge management programs in a deliberate and rigorous way." --Jill Dych�, Partner and Co-Founder, Baseline Consulting; Author of Customer Data Integration: Reaching a Single Version of the Truth"The authors and APQC have put together an excellent 'how to' manual for Knowledge Management (KM) that can benefit any organization, from those experienced in KM to those just starting. The authors have taken their years of experience and excellence in this field and written a masterful introduction and design manual that incorporates industry best-practices and alerts readers to the pitfalls they are likely to encounter. This book needs to be in the hands of every KM professional and corporate senior leader." --Ralph Soule, a member of the US Navy

ToGAF 9 Foundation Study Guide: Preparation for the TOGAF 9 Part 1 Examination


Rachel Harrison - 2009
    It gives an overview of every learning objective for the TOGAF 9 Foundation Syllabus and in-depth coverage on preparing and taking the TOGAF 9 Part 1 Examination. It is specifically designed to help individuals prepare for certification.This Study Guide is excellent material for:a) Individuals who require a basic understanding of TOGAF 9b) Professionals who are working in roles associated with an architecture project such as those responsible for planning, execution, development, delivery, and operationc) Architects who are looking for a first introduction to TOGAF 9d) Architects who want to achieve Level 2 certification in a stepwise manner and have not previously qualified as TOGAF 8 CertifiedA prior knowledge of enterprise architecture is advantageous but not required. While reading this Study Guide, the reader should also refer to the TOGAF Version 9.1 documentation available online at www.opengroup.org and also available as hard copy from www.vanharen.net and online booksellers

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

The Productive Programmer


Neal Ford - 2008
    The Productive Programmer offers critical timesaving and productivity tools that you can adopt right away, no matter what platform you use. Master developer Neal Ford not only offers advice on the mechanics of productivity-how to work smarter, spurn interruptions, get the most out your computer, and avoid repetition-he also details valuable practices that will help you elude common traps, improve your code, and become more valuable to your team. You'll learn to:Write the test before you write the codeManage the lifecycle of your objects fastidiously Build only what you need now, not what you might need later Apply ancient philosophies to software development Question authority, rather than blindly adhere to standardsMake hard things easier and impossible things possible through meta-programming Be sure all code within a method is at the same level of abstraction Pick the right editor and assemble the best tools for the job This isn't theory, but the fruits of Ford's real-world experience as an Application Architect at the global IT consultancy ThoughtWorks. Whether you're a beginner or a pro with years of experience, you'll improve your work and your career with the simple and straightforward principles in The Productive Programmer.

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction


Arvind Narayanan - 2016
    Whether you are a student, software developer, tech entrepreneur, or researcher in computer science, this authoritative and self-contained book tells you everything you need to know about the new global money for the Internet age.How do Bitcoin and its block chain actually work? How secure are your bitcoins? How anonymous are their users? Can cryptocurrencies be regulated? These are some of the many questions this book answers. It begins by tracing the history and development of Bitcoin and cryptocurrencies, and then gives the conceptual and practical foundations you need to engineer secure software that interacts with the Bitcoin network as well as to integrate ideas from Bitcoin into your own projects. Topics include decentralization, mining, the politics of Bitcoin, altcoins and the cryptocurrency ecosystem, the future of Bitcoin, and more.An essential introduction to the new technologies of digital currencyCovers the history and mechanics of Bitcoin and the block chain, security, decentralization, anonymity, politics and regulation, altcoins, and much moreFeatures an accompanying website that includes instructional videos for each chapter, homework problems, programming assignments, and lecture slidesAlso suitable for use with the authors' Coursera online courseElectronic solutions manual (available only to professors)

Business Intelligence for Dummies


Swain Scheps - 2007
    But you've heard at least a dozen definitions of what it is, and heard of at least that many BI tools. Where do you start? Business Intelligence For Dummies makes BI understandable! It takes you step by step through the technologies and the alphabet soup, so you can choose the right technology and implement a successful BI environment. You'll see how the applications and technologies work together to access, analyze, and present data that you can use to make better decisions about your products, customers, competitors, and more.You'll find out how to:Understand the principles and practical elements of BI Determine what your business needs Compare different approaches to BI Build a solid BI architecture and roadmap Design, develop, and deploy your BI plan Relate BI to data warehousing, ERP, CRM, and e-commerce Analyze emerging trends and developing BI tools to see what else may be useful Whether you're the business owner or the person charged with developing and implementing a BI strategy, checking out Business Intelligence For Dummies is a good business decision.

Comptia A+ 220-801 and 220-802 Exam Cram


David L. Prowse - 2012
     Limited Time Offer: Buy CompTIA(R) A+ 220-801 and 220-802 Exam Cram and receive a 10% off discount code for the CompTIA A+ 220-801 and 220-802 exams. To receive your 10% off discount code:Register your product at pearsonITcertification.com/registerFollow the instructionsGo to your Account page and click on "Access Bonus Content" CompTIA(R) A+ 220-801 and 220-802 Exam Cram, Sixth Edition is the perfect study guide to help you pass CompTIA's A+ 220-801 and 220-802 exams. It provides coverage and practice questions for every exam topic, including substantial new coverage of Windows 7, new PC hardware, tablets, smartphones, and professional-level networking and security. The book presents you with an organized test preparation routine through the use of proven series elements and techniques. Exam topic lists make referencing easy. Exam Alerts, Sidebars, and Notes interspersed throughout the text keep you focused on what you need to know. Cram Quizzes help you assess your knowledge, and the Cram Sheet tear card is the perfect last minute review. Covers the critical information you'll need to know to score higher on your CompTIA A+ 220-801 and 220-802 exams!Deploy and administer desktops and notebooks running Windows 7, Vista, or XPUnderstand, install, and troubleshoot motherboards, processors, and memoryTest and troubleshoot power-related problemsUse all forms of storage, including new Blu-ray and Solid State (SSD) devicesWork effectively with mobile devices, including tablets and smartphonesInstall, configure, and troubleshoot both visible and internal laptop componentsConfigure Windows components and applications, use Windows administrative tools, and optimize Windows systemsRepair damaged Windows environments and boot errorsWork with audio and video subsystems, I/O devices, and the newest peripheralsInstall and manage both local and network printersConfigure IPv4 and understand TCP/IP protocols and IPv6 changesInstall and configure SOHO wired/wireless networks and troubleshoot connectivityImplement secure authentication, prevent malware attacks, and protect data Companion CDThe companion CD contains a digital edition of the Cram Sheet and the powerful Pearson IT Certification Practice Test engine, complete with hundreds of exam-realistic questions and two complete practice exams. The assessment engine offers you a wealth of customization options and reporting features, laying out a complete assessment of your knowledge to help you focus your study where it is needed most. Pearson IT Certifcation Practice Test Minimum System RequirementsWindows XP (SP3), WIndows Vista (SP2), or Windows 7Microsoft .NET Framework 4.0 ClientPentium-class 1 GHz processor (or equivalent)512 MB RAM650 MB disk space plus 50 MB for each downloaded practice exam David L. Prowse is an author, computer network specialist, and technical trainer. Over the past several years he has authored several titles for Pearson Education, including the well-received CompTIA A+ Exam Cram and CompTIA Security+ Cert Guide. As a consultant, he installs and secures the latest in computer and networking technology. He runs the website www.davidlprowse.com, where he gladly answers questions from students and readers.

Think Stats


Allen B. Downey - 2011
    This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data

Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale


Neha Narkhede - 2017
    And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems

Learning the UNIX Operating System


Jerry Peek - 1989
    Why wade through a 600-page book when you can begin working productively in a matter of minutes? It's an ideal primer for Mac and PC users of the Internet who need to know a little bit about UNIX on the systems they visit.This book is the most effective introduction to UNIX in print. The fourth edition covers the highlights of the Linux operating system. It's a handy book for someone just starting with UNIX or Linux, as well as someone who encounters a UNIX system on the Internet. And it now includes a quick-reference card.Topics covered include: Linux operating system highlightsLogging in and logging outWindow systems (especially X/Motif)Managing UNIX files and directoriesSending and receiving mailRedirecting input/outputPipes and filtersBackground processingBasic network commandsv

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Refactoring Databases: Evolutionary Database Design


Scott W. Ambler - 2006
    Now, for the first time, leading agile methodologist Scott Ambler and renowned consultantPramodkumar Sadalage introduce powerful refactoring techniquesspecifically designed for database systems. Ambler and Sadalagedemonstrate how small changes to table structures, data, storedprocedures, and triggers can significantly enhance virtually anydatabase design - without changing semantic