Lectures on the Foundations of Mathematics, Cambridge 1939


Ludwig Wittgenstein - 1989
    A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.

An Introduction to Non-Classical Logic


Graham Priest - 2001
    Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

Dialogues on Mathematics


Alfréd Rényi - 1967
    

Philosophy of Mathematics: Selected Readings


Paul Benacerraf - 1983
    In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

Gödel's Theorem: An Incomplete Guide to Its Use and Abuse


Torkel Franzén - 2005
    With exceptional clarity, Franz n gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of "Logical Dilemmas: The Life and Work of Kurt G del

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

An Introduction to Probability and Inductive Logic


Ian Hacking - 2001
    The book has been designed to offer maximal accessibility to the widest range of students (not only those majoring in philosophy) and assumes no formal training in elementary symbolic logic. It offers a comprehensive course covering all basic definitions of induction and probability, and considers such topics as decision theory, Bayesianism, frequency ideas, and the philosophical problem of induction. The key features of the book are: * A lively and vigorous prose style* Lucid and systematic organization and presentation of the ideas* Many practical applications* A rich supply of exercises drawing on examples from such fields as psychology, ecology, economics, bioethics, engineering, and political science* Numerous brief historical accounts of how fundamental ideas of probability and induction developed.* A full bibliography of further reading Although designed primarily for courses in philosophy, the book could certainly be read and enjoyed by those in the social sciences (particularly psychology, economics, political science and sociology) or medical sciences such as epidemiology seeking a reader-friendly account of the basic ideas of probability and induction. Ian Hacking is University Professor, University of Toronto. He is Fellow of the Royal Society of Canada, Fellow of the British Academy, and Fellow of the American Academy of Arts and Sciences. he is author of many books including five previous books with Cambridge (The Logic of Statistical Inference, Why Does Language Matter to Philosophy?, The Emergence of Probability, Representing and Intervening, and The Taming of Chance).

Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

Introduction to Logic: and to the Methodology of Deductive Sciences


Alfred Tarski - 1993
    According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.

The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry


Shing-Tung Yau - 2019
      “An unexpectedly intimate look into a highly accomplished man, his colleagues and friends, the development of a new field of geometric analysis, and a glimpse into a truly uncommon mind.”—Nina MacLaughlin, Boston Globe “Engaging, eminently readable . . . For those with a taste for elegant and largely jargon-free explanations of mathematics, The Shape of a Life promises hours of rewarding reading.”—Judith Goodstein, American Scientist  Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world’s most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal–winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.

The Man Who Counted Infinity and Other Short Stories from Science, History and Philosophy


Sašo Dolenc - 2012
    The objective here is to explain science in a simple, attractive and fun form that is open to all.The first axiom of this approach was set out as follows: “We believe in the magic of science. We hope to show you that sci-ence is not a secret art, accessible only to a dedicated few. It involves learning about nature and society, and aspects of our existence which affect us all, and which we should all therefore have the chance to understand. We shall interpret science for those who might not speak its language fluently, but want to understand its meaning. We don’t teach, we just tell stories about the beginnings of science, the natural phenomena and the underlying principles through which they occur, and the lives of the people who discovered them.”The aim of the writings collected in this series is to present some key scientific events, ideas and personalities in the form of short stories that are easy and fun to read. Scientific and philo-sophical concepts are explained in a way that anyone may under-stand. Each story may be read separately, but at the same time they all band together to form a wide-ranging introduction to the history of science and areas of contemporary scientific research, as well as some of the recurring problems science has encountered in history and the philosophical dilemmas it raises today.Review“If I were the only survivor on a remote island and all I had with me were this book, a Swiss army knife and a bottle, I would throw the bottle into the sea with the note: ‘Don’t worry, I have everything I need.’”— Ciril Horjak, alias Dr. Horowitz, a comic artist“The writing is understandable, but never simplistic. Instructive, but never patronizing. Straightforward, but never trivial. In-depth, but never too intense.”— Ali Žerdin, editor at Delo, the main Slovenian newspaper“Does science think? Heidegger once answered this question with a decisive No. The writings on modern science skillfully penned by Sašo Dolenc, these small stories about big stories, quickly convince us that the contrary is true. Not only does science think in hundreds of unexpected ways, its intellectual challenges and insights are an inexhaustible source of inspiration and entertainment. The clarity of thought and the lucidity of its style make this book accessible to anyone … in the finest tradition of popularizing science, its achievements, dilemmas and predicaments.”— Mladen Dolar, philosopher and author of A Voice and Nothing More“Sašo Dolenc is undoubtedly one of our most successful authors in the field of popular science, possessing the ability to explain complex scientific achievements to a broader audience in a clear and captivating way while remaining precise and scientific. His collection of articles is of particular importance because it encompasses all areas of modern science in an unassuming, almost light-hearted manner.”— Boštjan Žekš, physicist and former president of the Slovenian Academy of Sciences and Arts

Mathematics: The Loss of Certainty


Morris Kline - 1980
    Mathematics: The Loss of Certainty refutes that myth.

Mind Tools: The Five Levels of Mathematical Reality


Rudy Rucker - 1987
    Reveals mathematics' great power as an alternative language for understanding things and explores such concepts as logic as a computing tool, digital versus analog processes and communication as information transmission.

On Formally Undecidable Propositions of Principia Mathematica and Related Systems


Kurt Gödel - 1992
    Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.