Algebraic Topology


Allen Hatcher - 2001
    This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.

Essential Poker Math: Fundamental No Limit Hold'em Mathematics You Need To Know


Alton Hardin - 2015
    I'm here to tell you it is not. In fact, fundamental poker math is very easy to learn. More importantly, it can yield you a lot more profits at the poker table. Without using simple math at the poker table, you are simply playing a guessing game. Use Simple Math at the Poker Table and Increase You Winnings In this book I will teach you how to use simple arithmetic at the poker table to gain a huge skill advantage over your opponents that will allow you to win more and lose less. Poker players that don't use math are simply guessing and you'll learn to no longer guess and know the right mathematical move at the poker table. These simple mathematical concepts I will be teaching you will drastically help improve your poker game and allow you to make the most profitable decisions at the poker. Contents and Overview First you will be introduced to some fundamental overarching poker concepts that apply to poker mathematics. Then we will begin our journey into poker mathematics where you will learn about probabilities and odds, pot odds and implied odds, pot equity, and expected value. You will then learn how to quickly estimate your equity at the poker table using the Rule of 2 & 4. Moreover, you'll learn the steps involved in determining if calling with a drawing hand is profitable or not. We will also cover how to size your bets with the best hand and teach you how often bluffs and hero calls need to work to be profitable. Lastly, we will show you how to perform EV calculations and better understand card combinations. Effectively Understand and Utilize Essential Poker Math Develop a keen understanding of Probability and Odds Learn to quickly calculate Pot Odds & Implied Odds at the poker table Effectively use Pot Equity & The Rule of 2 & 4 to Determine the correct poker play Understand how to use Expected Value (EV) both on and off the table to analyze your plays Learn the important math behind Bluffs & Hero Calls to give you a skill advantage over your opponent Learn Card Combinations to further enhance your card reading abilities And Many More Amazing Topics… What You Will Get out of This Book Suitable for both beginning and experienced poker players alike you'll learn many essential fundamental poker mathematical concepts that will help you drastically improve your poker game. After reading this book, you will have mastered fundamental No Limit Holdem mathematics. You will have gained a huge skill advantage over your opponents and you will be able to quickly and effectively use math at the poker table to make are always the most profitable move. Most importantly, you will become a much better and profitable poker player! So what are you waiting for? Purchase this book today to start learning how to advance your poker game with simple poker math! Alton Hardin is the founder of MicroGrinder.com, a free micro stakes poker website that is dedicated to helping micro stakes poker players improve their poker game by offering a wide array of free and low-cost resources including poker courses, poker t

On Numbers and Games


John H. Conway - 1976
    Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class, the surreal numbers, that includes both real numbers and ordinal numbers. These surreal numbers are applied in the author's mathematical analysis of game strategies. The additions to the Second Edition present recent developments in the area of mathematical game theory, with a concentration on surreal numbers and the additive theory of partizan games.

The Haskell Road to Logic, Maths and Programming


Kees Doets - 2004
    Haskell emerged in the last decade as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvellous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures.This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others.

Everything and More: A Compact History of Infinity


David Foster Wallace - 2003
    Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.

A Numerate Life: A Mathematician Explores the Vagaries of Life, His Own and Probably Yours


John Allen Paulos - 2015
    These vignettes serve as springboards to many telling perspectives: simple arithmetic puts life-long habits in a dubious new light; higher dimensional geometry helps us see that we're all rather peculiar; nonlinear dynamics explains the narcissism of small differences cascading into very different siblings; logarithms and exponentials yield insight on why we tend to become bored and jaded as we age; and there are tricks and jokes, probability and coincidences, and much more.For fans of Paulos or newcomers to his work, this witty commentary on his life--and yours--is fascinating reading.From the Trade Paperback edition.

Code: The Hidden Language of Computer Hardware and Software


Charles Petzold - 1999
    And through CODE, we see how this ingenuity and our very human compulsion to communicate have driven the technological innovations of the past two centuries. Using everyday objects and familiar language systems such as Braille and Morse code, author Charles Petzold weaves an illuminating narrative for anyone who’s ever wondered about the secret inner life of computers and other smart machines. It’s a cleverly illustrated and eminently comprehensible story—and along the way, you’ll discover you’ve gained a real context for understanding today’s world of PCs, digital media, and the Internet. No matter what your level of technical savvy, CODE will charm you—and perhaps even awaken the technophile within.

Sacred Number: The Secret Quality of Quantities


Miranda Lundy - 2005
    Beautifully illustrated with old engravings as well as contemporary imagery, Sacred Number introduces basic counting systems; significant numbers from major religious texts; the importance of astronomy, geometry, and music to number quality; how numbers affect architecture. Lundy explains why the ideas of Pythagoras still resonate, and she profiles each number from one to ten to show its distinct qualities: why, for example, the golden section is associated with five, and seven with the Virgin Mary.

The Joy of x: A Guided Tour of Math, from One to Infinity


Steven H. Strogatz - 2012
    do it? How should you flip your mattress to get the maximum wear out of it? How does Google search the Internet? How many people should you date before settling down? Believe it or not, math plays a crucial role in answering all of these questions and more.Math underpins everything in the cosmos, including us, yet too few of us understand this universal language well enough to revel in its wisdom, its beauty — and its joy. This deeply enlightening, vastly entertaining volume translates math in a way that is at once intelligible and thrilling. Each trenchant chapter of The Joy of x offers an “aha!” moment, starting with why numbers are so helpful, and progressing through the wondrous truths implicit in π, the Pythagorean theorem, irrational numbers, fat tails, even the rigors and surprising charms of calculus. Showing why he has won awards as a professor at Cornell and garnered extensive praise for his articles about math for the New York Times, Strogatz presumes of his readers only curiosity and common sense. And he rewards them with clear, ingenious, and often funny explanations of the most vital and exciting principles of his discipline.Whether you aced integral calculus or aren’t sure what an integer is, you’ll find profound wisdom and persistent delight in The Joy of x.

Symmetry: The Ordering Principle


David G. Wade - 2006
    In this little book Welsh writer and artist David Wade paints a picture of one of the most elusive and pervasive concepts known to man.

Statistical Mechanics


R.K. Pathria - 1972
    Highly recommended for graduate-level libraries.' ChoiceThis highly successful text, which first appeared in the year 1972 and has continued to be popular ever since, has now been brought up-to-date by incorporating the remarkable developments in the field of 'phase transitions and critical phenomena' that took place over the intervening years. This has been done by adding three new chapters (comprising over 150 pages and containing over 60 homework problems) which should enhance the usefulness of the book for both students and instructors. We trust that this classic text, which has been widely acclaimed for its clean derivations and clear explanations, will continue to provide further generations of students a sound training in the methods of statistical physics.

Introduction to Special Relativity


Robert Resnick - 1968
    Professor Resnick presents a fundamental and unified development of the subject with unusually clear discussions of the aspects that usually trouble beginners. He includes, for example, a section on the common sense of relativity. His presentation is lively and interspersed with historical, philosophical and special topics (such as the twin paradox) that will arouse and hold the reader's interest. You'll find many unique features that help you grasp the material, such as worked-out examples, summary tables, thought questions and a wealth of excellent problems. The emphasis throughout the book is physical. The experimental background, experimental confirmation of predictions, and the physical interpretation of principles are stressed. The book treats relativistic kinematics, relativistic dynamics, and relativity and electromagnetism and contains special appendices on the geometric representation of space-time and on general relativity. Its organization permits an instructor to vary the length and depth of his treatment and to use the book either with or following classical physics. These features make it an ideal companion for introductory course

Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks


Persi Diaconis - 2011
    Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge.Diaconis and Graham tell the stories--and reveal the best tricks--of the eccentric and brilliant inventors of mathematical magic. The book exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card Monte, traces the history of mathematical magic back to the oldest mathematical trick--and much more.

Higher Engineering Mathematics


B.V. Ramana - 2006
    Plethora of Solved examples help the students know the variety of problems & Procedure to solve them. Plenty of practice problems facilitate testing their understanding of the subject. Key Features: Covers the syllabus of all the four papers of Engineering Mathematics Detailed coverage of topics with lot of solved examples rendering clear understanding to the students. Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Chapters on preliminary topics like Analytical Solid Geometry Matrices and Determinants Sequence and Series Complex Numbers Vector Algebra Differential and Integral Calculus Extensive coverage of Probability and Statistics (5 chapters). Covers the syllabus of all the four papers of Engineering Mathematics Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Extensive coverage of ?Probability and Statistics (5 chapters) Table of Content: PART I PRELIMI NARIES Chapter 1 Vector Algebra , Theory of Equations ,Complex Numbers PART II DIFFERENTIAL AND INTEGRAL CALCULUS

Principles of Microeconomics


Robert H. Frank - 1994