Lost in Math: How Beauty Leads Physics Astray


Sabine Hossenfelder - 2018
    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

The Logic of Scientific Discovery


Karl Popper - 1934
    It remains the one of the most widely read books about science to come out of the twentieth century.(Note: the book was first published in 1934, in German, with the title Logik der Forschung. It was "reformulated" into English in 1959. See Wikipedia for details.)

Graph Theory With Applications To Engineering And Computer Science


Narsingh Deo - 2004
    GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1

The Mathematical Experience


Philip J. Davis - 1980
    This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.

How to read and do proofs


Daniel Solow - 1982
    Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.

One, Two, Three...Infinity: Facts and Speculations of Science


George Gamow - 1947
    . . full of intellectual treats and tricks, of whimsy and deep scientific philosophy. It is highbrow entertainment at its best, a teasing challenge to all who aspire to think about the universe." — New York Herald TribuneOne of the world's foremost nuclear physicists (celebrated for his theory of radioactive decay, among other accomplishments), George Gamow possessed the unique ability of making the world of science accessible to the general reader.He brings that ability to bear in this delightful expedition through the problems, pleasures, and puzzles of modern science. Among the topics scrutinized with the author's celebrated good humor and pedagogical prowess are the macrocosm and the microcosm, theory of numbers, relativity of space and time, entropy, genes, atomic structure, nuclear fission, and the origin of the solar system.In the pages of this book readers grapple with such crucial matters as whether it is possible to bend space, why a rocket shrinks, the "end of the world problem," excursions into the fourth dimension, and a host of other tantalizing topics for the scientifically curious. Brimming with amusing anecdotes and provocative problems, One Two Three . . . Infinity also includes over 120 delightful pen-and-ink illustrations by the author, adding another dimension of good-natured charm to these wide-ranging explorations.Whatever your level of scientific expertise, chances are you'll derive a great deal of pleasure, stimulation, and information from this unusual and imaginative book. It belongs in the library of anyone curious about the wonders of the scientific universe. "In One Two Three . . . Infinity, as in his other books, George Gamow succeeds where others fail because of his remarkable ability to combine technical accuracy, choice of material, dignity of expression, and readability." — Saturday Review of Literature

Bitcoin for the Befuddled


Conrad Barski - 2014
    Already used by people and companies around the world, many forecast that Bitcoin could radically transform the global economy. The value of a bitcoin has soared from less than a dollar in 2011 to well over $1000 in 2013, with many spikes and crashes along the way. The rise in value has brought Bitcoin into the public eye, but the cryptocurrency still confuses many people. Bitcoin for the Befuddled covers everything you need to know about Bitcoin—what it is, how it works, and how to acquire, store, and use bitcoins safely and securely. You'll also learn about Bitcoin's history, its complex cryptography, and its potential impact on trade and commerce. The book includes a humorous, full-color comic explaining Bitcoin concepts, plus a glossary of terms for easy reference.

The Universe in Zero Words: The Story of Mathematics as Told Through Equations


Dana Mackenzie - 2012
    Dana Mackenzie starts from the opposite premise: He celebrates equations. No history of art would be complete without pictures. Why, then, should a history of mathematics -- the universal language of science -- keep the masterpieces of the subject hidden behind a veil?"The Universe in Zero Words" tells the history of twenty-four great and beautiful equations that have shaped mathematics, science, and society -- from the elementary (1+1 = 2) to the sophisticated (the Black-Scholes formula for financial derivatives), and from the famous (E = mc^2) to the arcane (Hamilton's quaternion equations). Mackenzie, who has been called a "popular-science ace" by Booklist magazine, lucidly explains what each equation means, who discovered it (and how), and how it has affected our lives.(From the jacket copy.)Note: The Princeton University Press version (black cover) is for sale in the English-speaking world outside Australia. The Newsouth Press version (blue cover) is for sale in Australia. The two versions are identical except for the covers.

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Everything and More: A Compact History of Infinity


David Foster Wallace - 2003
    Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.

Complexity: A Guided Tour


Melanie Mitchell - 2009
    Based on her work at the Santa Fe Institute and drawing on its interdisciplinary strategies, Mitchell brings clarity to the workings of complexity across a broad range of biological, technological, and social phenomena, seeking out the general principles or laws that apply to all of them. Richly illustrated, Complexity: A Guided Tour--winner of the 2010 Phi Beta Kappa Book Award in Science--offers a wide-ranging overview of the ideas underlying complex systems science, the current research at the forefront of this field, and the prospects for its contribution to solving some of the most important scientific questions of our time.

Mathematician's Delight


W.W. Sawyer - 1943
    Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject.'W.W. Sawyer's deep understanding of how we learn and his lively, practical approach have made this an ideal introduction to mathematics for generations of readers. By starting at the level of simple arithmetic and algebra and then proceeding step by step through graphs, logarithms and trigonometry to calculus and the dizzying world of imaginary numbers, the book takes the mystery out of maths. Throughout, Sawyer reveals how theory is subordinate to the real-life applications of mathematics - the Pyramids were built on Euclidean principles three thousand years before Euclid formulated them - and celebrates the sheer intellectual stimulus of mathematics at its best.

A Shortcut Through Time: The Path to the Quantum Computer


George Johnson - 2003
    Such a device would operate under a different set of physical laws: The laws of quantum mechanics. Johnson gently leads the curious outsider through the surprisingly simple ideas needed to understand this dream, discussing the current state of the revolution, and ultimately assessing the awesome power these machines could have to change our world.

The Reason Revolution: Atheism, Secular Humanism, and the Collapse of Religion


Dan Dana - 2014
    It focuses squarely on the inherent irrationality of religion, and reveals its utter irreconcilability with science. Offering several "reconciliation theories" to people of faith, it forces every reader to make a choice.Contents The Reason Revolution in historical context Questioning belief Reasons for skepticism Secular humanism as an alternative worldview Political implications of atheism The collapse of religion Hopeful predictions Reconciliation theories Comments by clergyCall to action

The Jazz of Physics: The Secret Link Between Music and the Structure of the Universe


Stephon Alexander - 2016
    Inspired by Einstein, Coltrane put physics and geometry at the core of his music. Physicist and jazz musician Stephon Alexander follows suit, using jazz to answer physics' most vexing questions about the past and future of the universe. Following the great minds that first drew the links between music and physics-a list including Pythagoras, Kepler, Newton, Einstein, and Rakim-The Jazz of Physics reveals that the ancient poetic idea of the Music of the Spheres," taken seriously, clarifies confounding issues in physics. The Jazz of Physics will fascinate and inspire anyone interested in the mysteries of our universe, music, and life itself.