Book picks similar to
Elements of Dynamic Optimization by Alpha C. Chiang
economics
math
reference
mathematical-biology
Data Science For Dummies
Lillian Pierson - 2014
Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
How to Buy Your First Home (And How to Sell it Too)
Phil Spencer - 2011
Breaking everything down into simple and achievable steps, he makes this daunting process easy. Learn how to:- Find your perfect pad- Choose which mortgage is right for you- Negotiate with estate agents and sellers- Organise exchange and completion Including indispensable advice, money-saving tips and an essential trouble-shooting section, this guide covers everything a first-time buyer needs to know. And when it's time to move on again, this book will show you how to sell your home too.Phil Spencer is one the best-known faces on British television, co-presenting the hit Channel 4 series Location, Location, Location and Relocation, Relocation. Phil has written regularly columns in The Sunday Times and Country Life, and is contracted to Archant publishing to write columns that are syndicated in the group's numerous local glossy magazines which are distributed nationwide. Recent TV appearances include on The One Show, Children in Need and The Friday Night Project, and Phil also regularly appears on the radio to discuss property issues.
Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications
Nassim Nicholas Taleb - 2020
Switching from thin tailed to fat tailed distributions requires more than "changing the color of the dress." Traditional asymptotics deal mainly with either n=1 or n=∞, and the real world is in between, under the "laws of the medium numbers"-which vary widely across specific distributions. Both the law of large numbers and the generalized central limit mechanisms operate in highly idiosyncratic ways outside the standard Gaussian or Levy-Stable basins of convergence. A few examples: - The sample mean is rarely in line with the population mean, with effect on "na�ve empiricism," but can be sometimes be estimated via parametric methods. - The "empirical distribution" is rarely empirical. - Parameter uncertainty has compounding effects on statistical metrics. - Dimension reduction (principal components) fails. - Inequality estimators (Gini or quantile contributions) are not additive and produce wrong results. - Many "biases" found in psychology become entirely rational under more sophisticated probability distributions. - Most of the failures of financial economics, econometrics, and behavioral economics can be attributed to using the wrong distributions. This book, the first volume of the Technical Incerto, weaves a narrative around published journal articles.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Thomas' Calculus, Early Transcendentals, Media Upgrade
George B. Thomas Jr. - 2002
This book offers a full range of exercises, a precise and conceptual presentation, and a new media package designed specifically to meet the needs of today's readers. The exercises gradually increase in difficulty, helping readers learn to generalize and apply the concepts. The refined table of contents introduces the exponential, logarithmic, and trigonometric functions in Chapter 7 of the text.KEY TOPICS Functions, Limits and Continuity, Differentiation, Applications of Derivatives, Integration, Applications of Definite Integrals, Integrals and Transcendental Functions, Techniques of Integration, Further Applications of Integration, Conic Sections and Polar Coordinates, Infinite Sequences and Series, Vectors and the Geometry of Space, Vector-Valued Functions and Motion in Space, Partial Derivatives, Multiple Integrals, Integration in Vector Fields.MARKET For all readers interested in Calculus.
Math for Grownups
Laura Laing - 2011
You multiply something by something, right? Or you're scratching your head, wondering how to compute the odds that your football team will take next Sunday's game. You're pretty sure that involved ratios. The problem is, you can't quite remember.Here you get an adult refresher and real-life context—with examples ranging from how to figure out how many shingles it takes to re-roof the garage to the formula for resizing Mom's tomato sauce recipe for your entire family.Forget higher calculus—you just need an open mind. And with this practical guide, math can stop being scary and start being useful.
The Visual Display of Quantitative Information
Edward R. Tufte - 1983
Theory and practice in the design of data graphics, 250 illustrations of the best (and a few of the worst) statistical graphics, with detailed analysis of how to display data for precise, effective, quick analysis. Design of the high-resolution displays, small multiples. Editing and improving graphics. The data-ink ratio. Time-series, relational graphics, data maps, multivariate designs. Detection of graphical deception: design variation vs. data variation. Sources of deception. Aesthetics and data graphical displays. This is the second edition of The Visual Display of Quantitative Information. Recently published, this new edition provides excellent color reproductions of the many graphics of William Playfair, adds color to other images, and includes all the changes and corrections accumulated during 17 printings of the first edition.
The Free Market And Its Enemies: Pseudo Science, Socialism, And Inflation
Ludwig von Mises - 2004
Publication date: 2004 Notes: This is an OCR reprint. There may be numerous typos or missing text. There are no illustrations or indexes. When you buy the General Books edition of this book you get free trial access to Million-Books.com where you can select from more than a million books for free. You can also preview the book there.
Fundamentals of Financial Management
James C. Van Horne - 1974
Fundamentals of Financial Management is the route to understanding the financial decision-making process and to interpreting the impacts that financial decisions have on value creation. Ideal for those new to financial management, this sparklingly clear text cuts through the mire of the financial decision-making process. A practical and reliable book, free from technical errors, backed up by a wealth of award-winning support material.
Models.Behaving.Badly.: Why Confusing Illusion with Reality Can Lead to Disaster, on Wall Street and in Life
Emanuel Derman - 2011
The reliance traders put on such quantitative analysis was catastrophic for the economy, setting off the series of financial crises that began to erupt in 2007 with the mortgage crisis and from which we're still recovering. Here Derman looks at why people--bankers in particular--still put so much faith in these models, and why it's a terrible mistake to do so.Though financial models imitate the style of physics by using the language of mathematics, ultimately they deal with human beings. Their similarity confuses the fundamental difference between the aims and possible achievements of the phsyics world and that of the financial world. When we make a model involving human beings, we are trying to force the ugly stepsister's foot into Cinderella's pretty glass slipper. It doesn't fit without cutting off some of the essential parts. Physicists and economists have been too enthusiastic to recognize the limits of their equations in the sphere of human behavior--which of course is what economics is all about. Models.Behaving.Badly. includes a personal account Derman's childhood encounter with failed models--the utopia of the kibbutz, his experience as a physicist on Wall Street, and a look at the models quants generated: the benefits they brought and the problems they caused. Derman takes a close look at what a model is, and then he highlights the differences between the success of modeling in physics and its relative failure in economics. Describing the collapse of the subprime mortgage CDO market in 2007, Derman urges us to stop relying on these models where possible, and offers suggestions for mending these models where they might still do some good. This is a fascinating, lyrical, and very human look behind the curtain at the intersection between mathematics and human nature.
Learn R in a Day
Steven Murray - 2013
The book assumes no prior knowledge of computer programming and progressively covers all the essential steps needed to become confident and proficient in using R within a day. Topics include how to input, manipulate, format, iterate (loop), query, perform basic statistics on, and plot data, via a step-by-step technique and demonstrations using in-built datasets which the reader is encouraged to replicate on their computer. Each chapter also includes exercises (with solutions) to practice key skills and empower the reader to build on the essentials gained during this introductory course.
Computer Age Statistical Inference: Algorithms, Evidence, and Data Science
Bradley Efron - 2016
'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
The Official Guide for GMAT Quantitative Review
Graduate Management Admission Council (GMAC) - 2005
This work focuses on the maths skills necessary to pass the GMAT, with nearly 300 questions and explanations on subjects such as arithmetic, algebra, geometry and data sufficiency.
Applied Multivariate Statistical Analysis
Richard A. Johnson - 1982
of Wisconsin-Madison) and Wichern (Texas A&M U.) present the newest edition of this college text on the statistical methods for describing and analyzing multivariate data, designed for students who have taken two or more statistics courses. The fifth edition includes the addition of seve