Book picks similar to
Natural Language Processing with Transformers by Lewis Tunstall
ai
tech-read
statistics
deep-learning
Machine Learning for Dummies
John Paul Mueller - 2016
Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks.Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data--or anything in between--this guide makes it easier to understand and implement machine learning seamlessly.Grasp how day-to-day activities are powered by machine learning Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis Learn to code in R using R Studio Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!
Linear Algebra Done Right
Sheldon Axler - 1995
The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.
Show Me the Numbers: Designing Tables and Graphs to Enlighten
Stephen Few - 2004
Information is provided on the fundamental concepts of table and graph design, the numbers and knowledge most suitable for display in a graphic form, the best tabular means to communicate certain ideas, and the component-level aspects of design. Analysts, technicians, and managers will appreciate the solid theory behind this outline for ensuring that tables and graphs present quantitative business information in a truthful, attractive format that facilitates better decision making.
Storytelling with Data: A Data Visualization Guide for Business Professionals
Cole Nussbaumer Knaflic - 2015
You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!
HBR's 10 Must Reads on AI, Analytics, and the New Machine Age (with bonus article "Why Every Company Needs an Augmented Reality Strategy" by Michael E. Porter and James E. Heppelmann)
Harvard Business Review - 2018
Is your company ready?If you read nothing else on how intelligent machines are revolutionizing business, read these 10 articles. We've combed through hundreds of Harvard Business Review articles and selected the most important ones to help you understand how these technologies work together, how to adopt them, and why your strategy can't ignore them.
In this book you'll learn how:
Data science, driven by artificial intelligence and machine learning, is yielding unprecedented business insights
Blockchain has the potential to restructure the economy
Drones and driverless vehicles are becoming essential tools
3-D printing is making new business models possible
Augmented reality is transforming retail and manufacturing
Smart speakers are redefining the rules of marketing
Humans and machines are working together to reach new levels of productivity
This collection of articles includes "Artificial Intelligence for the Real World," by Thomas H. Davenport and Rajeev Ronanki; "Stitch Fix's CEO on Selling Personal Style to the Mass Market," by Katrina Lake; "Algorithms Need Managers, Too," by Michael Luca, Jon Kleinberg, and Sendhil Mullainathan; "Marketing in the Age of Alexa," by Niraj Dawar; "Why Every Organization Needs an Augmented Reality Strategy," by Michael E. Porter and James E. Heppelmann; "Drones Go to Work," by Chris Anderson; "The Truth About Blockchain," by Marco Iansiti and Karim R. Lakhani; "The 3-D Printing Playbook," by Richard A. D’Aveni; "Collaborative Intelligence: Humans and AI Are Joining Forces," by H. James Wilson and Paul R. Daugherty; "When Your Boss Wears Metal Pants," by Walter Frick; and "Managing Our Hub Economy," by Marco Iansiti and Karim R. Lakhani.
The Black Box Society: The Secret Algorithms That Control Money and Information
Frank Pasquale - 2014
The data compiled and portraits created are incredibly detailed, to the point of being invasive. But who connects the dots about what firms are doing with this information? The Black Box Society argues that we all need to be able to do so--and to set limits on how big data affects our lives.Hidden algorithms can make (or ruin) reputations, decide the destiny of entrepreneurs, or even devastate an entire economy. Shrouded in secrecy and complexity, decisions at major Silicon Valley and Wall Street firms were long assumed to be neutral and technical. But leaks, whistleblowers, and legal disputes have shed new light on automated judgment. Self-serving and reckless behavior is surprisingly common, and easy to hide in code protected by legal and real secrecy. Even after billions of dollars of fines have been levied, underfunded regulators may have only scratched the surface of this troubling behavior.Frank Pasquale exposes how powerful interests abuse secrecy for profit and explains ways to rein them in. Demanding transparency is only the first step. An intelligible society would assure that key decisions of its most important firms are fair, nondiscriminatory, and open to criticism. Silicon Valley and Wall Street need to accept as much accountability as they impose on others.
Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)
Michael H. Kutner - 2003
Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.
Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites
Matthew A. Russell - 2011
You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Information Technology for Management: Transforming Organizations in the Digital Economy
Efraim Turban - 1995
Throughout, the emphasis is on how IT provides organizations with strategic advantage by facilitating problem solving, increasing productivity and quality, improving customer service, and enabling business process reengineering. It also covers the latest real-world developments, including the introduction of applied grid computing and utility computing.
Visualize This: The FlowingData Guide to Design, Visualization, and Statistics
Nathan Yau - 2011
Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships.Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.
Cybernetics: or the Control and Communication in the Animal and the Machine
Norbert Wiener - 1948
It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review
Graph Theory With Applications To Engineering And Computer Science
Narsingh Deo - 2004
GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1
Advances in Financial Machine Learning
Marcos López de Prado - 2018
Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Behind Deep Blue: Building the Computer That Defeated the World Chess Champion
Feng-Hsiung Hsu - 2002
Written by the man who started the adventure, Behind Deep Blue reveals the inside story of what happened behind the scenes at the two historic Deep Blue vs. Kasparov matches. This is also the story behind the quest to create the mother of all chess machines. The book unveils how a modest student project eventually produced a multimillion dollar supercomputer, from the development of the scientific ideas through technical setbacks, rivalry in the race to develop the ultimate chess machine, and wild controversies to the final triumph over the world's greatest human player.In nontechnical, conversational prose, Feng-hsiung Hsu, the system architect of Deep Blue, tells us how he and a small team of fellow researchers forged ahead at IBM with a project they'd begun as students at Carnegie Mellon in the mid-1980s: the search for one of the oldest holy grails in artificial intelligence--a machine that could beat any human chess player in a bona fide match. Back in 1949 science had conceived the foundations of modern chess computers but not until almost fifty years later--until Deep Blue--would the quest be realized.Hsu refutes Kasparov's controversial claim that only human intervention could have allowed Deep Blue to make its decisive, "uncomputerlike" moves. In riveting detail he describes the heightening tension in this war of brains and nerves, the "smoldering fire" in Kasparov's eyes. Behind Deep Blue is not just another tale of man versus machine. This fascinating book tells us how man as genius was given an ultimate, unforgettable run for his mind, no, not by the genius of a computer, but of man as toolmaker.