Book picks similar to
Painless Algebra by Lynette Long
math
non-fiction
mathematics
reference
Genki I: An Integrated Course in Elementary Japanese
Eri Banno - 1999
Abundantly illustrated and containing a wide variety of exercises, Genki is sure to bring vigor to your classroom! Though primarily meant for use in college-level classes, it is also a good guide for independent learners and is a nice resource book for teachers of Japanese. Genki's authors teach at Kansai Gaidai University, which hosts the largest number of North American students spending their junior year in Japan.
Essentials of Abnormal Psychology
V. Mark Durand - 2002
In this briefer version, the authors explain abnormal psychology in the most modern, scientifically valid method for studying abnormal psychology. Through this integrative approach, students learn that psychological disorders are rooted in multiple factors: biological, psychological, cultural, social, familial, and even political. Conversational writing style, consistent pedagogy, video clips of real clients (located on the accompanying free Abnormal Psychology Live 2.5 CD-ROM), and real case profiles - 95 percent from the authors' own case files - provide a realistic context for the scientific findings of the book, and ensure that readers never lose sight of the fact that beyond the DSM-IV-TR criteria, the theories, and the research are real people. With this text, students can take advantage of Abnormal PsychologyNow, our web-based, intelligent study system that, by using online diagnostic pre- and post-tests, helps students prioritize their study time by creating personalized study plans that focus only the sections in which they experienced difficulty.
How to Count to Infinity
Marcus du Sautoy - 2020
But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached.
By the end of this book you'll be able to count to infinity... and beyond.
On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!
Chess Mysteries of Sherlock Holmes: Fifty Tantalizing Problems of Chess Detection
Raymond M. Smullyan - 1994
The progressively more difficult puzzles include a double murder.
All the Mathematics You Missed
Thomas A. Garrity - 2001
This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.
How to Be a Math Genius
Mike Goldsmith - 2012
Packed with math activities and puzzles, compelling stories of math geniuses, math facts and stats, and more, How to be a Math Genius makes the dreaded subject of math both engaging and relevant.
The Cartoon Guide to Calculus
Larry Gonick - 2011
Gonick’s The Cartoon Guide to Calculus is a refreshingly humorous, remarkably thorough guide to general calculus that, like his earlier Cartoon Guide to Physics and Cartoon History of the Modern World, will prove a boon to students, educators, and eager learners everywhere.
The Stars: A New Way to See Them
H.A. Rey - 1952
This is a clear, vivid text with charts and maps showing the positions of the constellations the year round.
Why Does E=mc²? (And Why Should We Care?)
Brian Cox - 2009
Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.
What Your 6th Grader Needs to Know: Fundamentals of a Good Sixth-Grade Education
E.D. Hirsch Jr. - 1993
Grade by grade, these groundbreaking and successful books provide a solid foundation in the fundamentals of a good education for first to sixth graders.B & W photographs, linecuts, and maps throughout; two-color printing.
Proofs from the Book, 3e
Martin Aigner - 1998
Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."
Literature: An Introduction to Reading and Writing
Edgar V. Roberts - 1986
It is not an afterthought and it is not treated as a separate chapter or appendix; but rather, it is the carefully integrated philosophy of Professor Roberts' approach to teaching literature and composition. Complete coverage of writing about each element and a total of 28 MLA-format student essays with accompanying commentary ensure student comprehension of writing about literature and therefore, produce better student papers.
Our Mathematical Universe: My Quest for the Ultimate Nature of Reality
Max Tegmark - 2012
Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index
An Introduction to Theories of Personality
B.R. Hergenhahn - 1980
Thus, seminal theories representing the psychoanalytic, sociocultural, trait, learning, sociological and existential-humanistic paradigms are offered as different - yet equally valid - ways of approaching the study of personality. This approach - together with student-tested experiential exercises - not only introduces students to the rich history of psychology but to practical information that helps them understand theier own lives and their relationships with other people.
Webster's New World Thesaurus
Charlton Grant Laird - 1971
The last word on the right word includes new synonyms, new slang and colloquial expressions, new technical terms, and more.