Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements


John R. Taylor - 1982
    It is designed as a reference for students in the physical sciences and engineering.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

The Flaw of Averages: Why We Underestimate Risk in the Face of Uncertainty


Sam L. Savage - 2009
    As the recent collapse on Wall Street shows, we are often ill-equipped to deal with uncertainty and risk. Yet every day we base our personal and business plans on uncertainties, whether they be next month's sales, next year's costs, or tomorrow's stock price. In The Flaw of Averages, Sam Savage-known for his creative exposition of difficult subjects- describes common avoidable mistakes in assessing risk in the face of uncertainty. Along the way, he shows why plans based on average assumptions are wrong, on average, in areas as diverse as healthcare, accounting, the War on Terror, and climate change. In his chapter on Sex and the Central Limit Theorem, he bravely grasps the literary third rail of gender differences.Instead of statistical jargon, Savage presents complex concepts in plain English. In addition, a tightly integrated web site contains numerous animations and simulations to further connect the seat of the reader's intellect to the seat of their pants.The Flaw of Averages typically results when someone plugs a single number into a spreadsheet to represent an uncertain future quantity. Savage finishes the book with a discussion of the emerging field of Probability Management, which cures this problem though a new technology that can pack thousands of numbers into a single spreadsheet cell.Praise for The Flaw of Averages"Statistical uncertainties are pervasive in decisions we make every day in business, government, and our personal lives. Sam Savage's lively and engaging book gives any interested reader the insight and the tools to deal effectively with those uncertainties. I highly recommend The Flaw of Averages." --William J. Perry, Former U.S. Secretary of Defense"Enterprise analysis under uncertainty has long been an academic ideal. . . . In this profound and entertaining book, Professor Savage shows how to make all this practical, practicable, and comprehensible." ---Harry Markowitz, Nobel Laureate in Economics

Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)


Jiawei Han - 2000
    Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site

Introduction to Probability


Joseph K. Blitzstein - 2014
    The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo MCMC. Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Networks, Crowds, and Markets


David Easley - 2010
    This connectedness is found in many incarnations: in the rapid growth of the Internet, in the ease with which global communication takes place, and in the ability of news and information as well as epidemics and financial crises to spread with surprising speed and intensity. These are phenomena that involve networks, incentives, and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which our decisions can have subtle consequences for others. This introductory undergraduate textbook takes an interdisciplinary look at economics, sociology, computing and information science, and applied mathematics to understand networks and behavior. It describes the emerging field of study that is growing at the interface of these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.

Statistics for Business & Economics


James T. McClave - 1991
    Theoretical, yet applied. Statistics for Business and Economics, Eleventh Edition, gives you the best of both worlds. Using a rich array of applications from a variety of industries, McClave/Sincich/Benson clearly demonstrates how to use statistics effectively in a business environment.The book focuses on developing statistical thinking so the reader can better assess the credibility and value of inferences made from data. As consumers and future producers of statistical inferences, readers are introduced to a wide variety of data collection and analysis techniques to help them evaluate data and make informed business decisions. As with previous editions, this revision offers an abundance of applications with many new and updated exercises that draw on real business situations and recent economic events. The authors assume a background of basic algebra.

Fundamentals of Investing [with MyFinanceLab]


Lawrence J. Gitman - 1981
    Addressing the growing demand to learn how to manage personal investments and finances, the authors have turned the spotlight on individual rather than institutional investors. Their strong real-word focus includes superior coverage of mutual funds, international investments, and investment decision techniques. The new edition makes use of the Internet through exercises and cross references to Internet resources. An accompanying CD-ROM offers hands-on practice in analyzing companies for investment purposes. All these distinctive features ensure that Fundamentals of Investing will continue to define the market for years to come.

The Science of Fear: Why We Fear the Things We Shouldn't--and Put Ourselves in Greater Danger


Daniel Gardner - 2008
    And yet, we are the safest and healthiest humans in history. Irrational fear seems to be taking over, often with tragic results. For example, in the months after 9/11, when people decided to drive instead of fly—believing they were avoiding risk—road deaths rose by more than 1,500. In this fascinating, lucid, and thoroughly entertaining examination of how humans process risk, journalist Dan Gardner had the exclusive cooperation of Paul Slovic, the world renowned risk-science pioneer, as he reveals how our hunter gatherer brains struggle to make sense of a world utterly unlike the one that made them. Filled with illuminating real world examples, interviews with experts, and fast-paced, lean storytelling, The Science of Fear shows why it is truer than ever that the worst thing we have to fear is fear itself.

Algorithm Design


Jon Kleinberg - 2005
    The book teaches a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.

Why Stock Markets Crash: Critical Events in Complex Financial Systems


Didier Sornette - 2002
    In this book, Didier Sornette boldly applies his varied experience in these areas to propose a simple, powerful, and general theory of how, why, and when stock markets crash.Most attempts to explain market failures seek to pinpoint triggering mechanisms that occur hours, days, or weeks before the collapse. Sornette proposes a radically different view: the underlying cause can be sought months and even years before the abrupt, catastrophic event in the build-up of cooperative speculation, which often translates into an accelerating rise of the market price, otherwise known as a "bubble." Anchoring his sophisticated, step-by-step analysis in leading-edge physical and statistical modeling techniques, he unearths remarkable insights and some predictions--among them, that the "end of the growth era" will occur around 2050.Sornette probes major historical precedents, from the decades-long "tulip mania" in the Netherlands that wilted suddenly in 1637 to the South Sea Bubble that ended with the first huge market crash in England in 1720, to the Great Crash of October 1929 and Black Monday in 1987, to cite just a few. He concludes that most explanations other than cooperative self-organization fail to account for the subtle bubbles by which the markets lay the groundwork for catastrophe.Any investor or investment professional who seeks a genuine understanding of looming financial disasters should read this book. Physicists, geologists, biologists, economists, and others will welcome "Why Stock Markets Crash" as a highly original "scientific tale," as Sornette aptly puts it, of the exciting and sometimes fearsome--but no longer quite so unfathomable--world of stock markets.

Econometrics


Fumio Hayashi - 2000
    It introduces first year Ph.D. students to standard graduate econometrics material from a modern perspective. It covers all the standard material necessary for understanding the principal techniques of econometrics from ordinary least squares through cointegration. The book is also distinctive in developing both time-series and cross-section analysis fully, giving the reader a unified framework for understanding and integrating results.Econometrics has many useful features and covers all the important topics in econometrics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models (such as probit and tobit) are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient manner. Eight of the ten chapters include a serious empirical application drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises at the end of each chapter provide students a hands-on experience applying the techniques covered in the chapter. The exposition is rigorous yet accessible to students who have a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions, so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text.For those who intend to write a thesis on applied topics, the empirical applications of the book are a good way to learn how to conduct empirical research. For the theoretically inclined, the no-compromise treatment of the basic techniques is a good preparation for more advanced theory courses.

R for Everyone: Advanced Analytics and Graphics


Jared P. Lander - 2013
    R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you'll need to accomplish 80 percent of modern data tasks. Lander's self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You'll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you'll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you're done, you won't just know how to write R programs, you'll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES - Exploring R, RStudio, and R packages - Using R for math: variable types, vectors, calling functions, and more - Exploiting data structures, including data.frames, matrices, and lists - Creating attractive, intuitive statistical graphics - Writing user-defined functions - Controlling program flow with if, ifelse, and complex checks - Improving program efficiency with group manipulations - Combining and reshaping multiple datasets - Manipulating strings using R's facilities and regular expressions - Creating normal, binomial, and Poisson probability distributions - Programming basic statistics: mean, standard deviation, and t-tests - Building linear, generalized linear, and nonlinear models - Assessing the quality of models and variable selection - Preventing overfitting, using the Elastic Net and Bayesian methods - Analyzing univariate and multivariate time series data - Grouping data via K-means and hierarchical clustering - Preparing reports, slideshows, and web pages with knitr - Building reusable R packages with devtools and Rcpp - Getting involved with the R global community

Principles of Statistics


M.G. Bulmer - 1979
    There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again for the classroom or for self-study.Principles of Statistics was created primarily for the student of natural sciences, the social scientist, the undergraduate mathematics student, or anyone familiar with the basics of mathematical language. It assumes no previous knowledge of statistics or probability; nor is extensive mathematical knowledge necessary beyond a familiarity with the fundamentals of differential and integral calculus. (The calculus is used primarily for ease of notation; skill in the techniques of integration is not necessary in order to understand the text.)Professor Bulmer devotes the first chapters to a concise, admirably clear description of basic terminology and fundamental statistical theory: abstract concepts of probability and their applications in dice games, Mendelian heredity, etc.; definitions and examples of discrete and continuous random variables; multivariate distributions and the descriptive tools used to delineate them; expected values; etc. The book then moves quickly to more advanced levels, as Professor Bulmer describes important distributions (binomial, Poisson, exponential, normal, etc.), tests of significance, statistical inference, point estimation, regression, and correlation. Dozens of exercises and problems appear at the end of various chapters, with answers provided at the back of the book. Also included are a number of statistical tables and selected references.

Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition


Dan Jurafsky - 2000
    This comprehensive work covers both statistical and symbolic approaches to language processing; it shows how they can be applied to important tasks such as speech recognition, spelling and grammar correction, information extraction, search engines, machine translation, and the creation of spoken-language dialog agents. The following distinguishing features make the text both an introduction to the field and an advanced reference guide.- UNIFIED AND COMPREHENSIVE COVERAGE OF THE FIELDCovers the fundamental algorithms of each field, whether proposed for spoken or written language, whether logical or statistical in origin.- EMPHASIS ON WEB AND OTHER PRACTICAL APPLICATIONSGives readers an understanding of how language-related algorithms can be applied to important real-world problems.- EMPHASIS ON SCIENTIFIC EVALUATIONOffers a description of how systems are evaluated with each problem domain.- EMPERICIST/STATISTICAL/MACHINE LEARNING APPROACHES TO LANGUAGE PROCESSINGCovers all the new statistical approaches, while still completely covering the earlier more structured and rule-based methods.