Book picks similar to
Statistical Data Analysis by Glen Cowan
science
nonfiction
edu
reviewed
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
Cameron Davidson-Pilon - 2014
However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power.
Bayesian Methods for Hackers
illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
The Essence of Chaos
Edward N. Lorenz - 1993
Seemingly random events -- the flapping of a flag, a storm-driven wave striking the shore, a pinball's path -- often appear to have no order, no rational pattern. Explicating the theory of chaos and the consequences of its principal findings -- that actual, precise rules may govern such apparently random behavior -- has been a major part of the work of Edward N. Lorenz. In The Essence of Chaos, Lorenz presents to the general reader the features of this "new science," with its far-reaching implications for much of modern life, from weather prediction to philosophy, and he describes its considerable impact on emerging scientific fields.Unlike the phenomena dealt with in relativity theory and quantum mechanics, systems that are now described as "chaotic" can be observed without telescopes or microscopes. They range from the simplest happenings, such as the falling of a leaf, to the most complex processes, like the fluctuations of climate. Each process that qualifies, however, has certain quantifiable characteristics: how it unfolds depends very sensitively upon its present state, so that, even though it is not random, it seems to be. Lorenz uses examples from everyday life, and simple calculations, to show how the essential nature of chaotic systems can be understood. In order to expedite this task, he has constructed a mathematical model of a board sliding down a ski slope as his primary illustrative example. With this model as his base, he explains various chaotic phenomena, including some associated concepts such as strange attractors and bifurcations.As a meteorologist, Lorenz initially became interested in the field of chaos because of its implications for weather forecasting. In a chapter ranging through the history of weather prediction and meteorology to a brief picture of our current understanding of climate, he introduces many of the researchers who conceived the experiments and theories, and he describes his own initial encounter with chaos.A further discussion invites readers to make their own chaos. Still others debate the nature of randomness and its relationship to chaotic systems, and describe three related fields of scientific thought: nonlinearity, complexity, and fractality. Appendixes present the first publication of Lorenz's seminal paper "Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?"; the mathematical equations from which the copious illustrations were derived; and a glossary.
Semiconductor Physics and Devices: Basic Principles
Donald A. Neamen - 1992
The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics, and semiconductor device physics in a clear and understandable way.
Physical Chemistry
Peter Atkins - 1978
With its modern emphasis on the molecular view of physical chemistry, its wealth of contemporary applications (in the new "Impact on" features), vivid full-color presentation, and dynamic new media tools, the thoroughly revised new edition is again the most modern, most effective full-length textbook available for the physical chemistry classroom. NOW AVAILABLE IN SPLIT VOLUMESFor maximum flexibility in your physical chemistry course, this text isnow offered as a traditional or in two volumes.• Volume 1: Thermodynamics and Kinetics (ISBN 0-7167-8567-6)• Volume 2: Quantum Chemistry, Spectroscopy, and StatisticalThermodynamics (ISBN 0-7167-8569-2)See Table of Contents for the contents of each volume.
Infinity and the Mind: The Science and Philosophy of the Infinite
Rudy Rucker - 1981
Rucker acquaints us with Godel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations.Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Godel's incompleteness theorems. His personal encounters with Godel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism.
Thermal Physics
Charles Kittel - 1969
CONGRATULATIONS TO HERBERT KROEMER, 2000 NOBEL LAUREATE FOR PHYSICS For upper-division courses in thermodynamics or statistical mechanics, Kittel and Kroemer offers a modern approach to thermal physics that is based on the idea that all physical systems can be described in terms of their discrete quantum states, rather than drawing on 19th-century classical mechanics concepts.
Easy as Pi: The Countless Ways We Use Numbers Every Day
Jamie Buchan - 2009
Make this and all of the Blackboard Books(tm) a permanent fixture on your shelf, and you'll have instant access to a breadth of knowledge. Whether you need homework help or want to win that trivia game, this series is the trusted source for fun facts.
Once Upon A Number: The Hidden Mathematical Logic Of Stories
John Allen Paulos - 1998
Good stories are full of life: they engage our emotions and have subtlety and nuance, but they lack rigor and the truths they tell are elusive and subject to debate. As ways of understanding the world around us, numbers and stories seem almost completely incompatible. Once Upon a Number shows that stories and numbers aren't as different as you might imagine, and in fact they have surprising and fascinating connections. The concepts of logic and probability both grew out of intuitive ideas about how certain situations would play out. Now, logicians are inventing ways to deal with real world situations by mathematical means -- by acknowledging, for instance, that items that are mathematically interchangeable may not be interchangeable in a story. And complexity theory looks at both number strings and narrative strings in remarkably similar terms. Throughout, renowned author John Paulos mixes numbers and narratives in his own delightful style. Along with lucid accounts of cutting-edge information theory we get hilarious anecdotes and jokes; instructions for running a truly impressive pyramid scam; a freewheeling conversation between Groucho Marx and Bertrand Russell (while they're stuck in an elevator together); explanations of why the statistical evidence against OJ Simpson was overwhelming beyond doubt and how the Unabomber's thinking shows signs of mathematical training; and dozens of other treats. This is another winner from America's favorite mathematician.
The Wages of Wins: Taking Measure of the Many Myths in Modern Sport
David J. Berri - 2006
Over the years sports debates have become muddled by many myths that do not match the numbers generated by those playing the games. In The Wages of Wins, the authors use layman's language and easy to follow examples based on their own academic research to debunk many of the most commonly held beliefs about sports.In this updated version of their book, these authors explain why Allen Iverson leaving Philadelphia made the 76ers a better team, why the Yankees find it so hard to repeat their success from the late 1990s, and why even great quarterbacks like Brett Favre are consistently inconsistent. The book names names, and makes it abundantly clear that much of the decision making of coaches and general managers does not hold up to an analysis of the numbers. Whether you are a fantasy league fanatic or a casual weekend fan, much of what you believe about sports will change after reading this book.
How to Speak Science: Gravity, Relativity, and Other Ideas That Were Crazy Until Proven Brilliant
Bruce Benamran - 2018
How to Speak Science acquaints us not only with what scientists know, but how they think--so that each of us can reason like a physicist and appreciate the world in all its beautiful chaos."The perfect example of a geeky text that is neither condescending nor highfalutin. It has sufficient genuine scientific content to keep the techies interested, while being fast-paced enough (and at times genuinely funny) to keep the neophyte on board." --E&T Magazine
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
Sharon Bertsch McGrayne - 2011
To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Introductory Econometrics: A Modern Approach
Jeffrey M. Wooldridge - 1999
It bridges the gap between the mechanics of econometrics and modern applications of econometrics by employing a systematic approach motivated by the major problems facing applied researchers today. Throughout the text, the emphasis on examples gives a concrete reality to economic relationships and allows treatment of interesting policy questions in a realistic and accessible framework.