Simply Einstein: Relativity Demystified


Richard Wolfson - 2002
    Drawing from years of teaching modern physics to nonscientists, Wolfson explains in a lively, conversational style the simple principles underlying Einstein's theory.Relativity, Wolfson shows, gave us a new view of space and time, opening the door to questions about their flexible nature: Is the universe finite or infinite? Will it expand forever or eventually collapse in a "big crunch"? Is time travel possible? What goes on inside a black hole? How does gravity really work? These questions at the forefront of twenty-first-century physics are all rooted in the profound and sweeping vision of Albert Einstein's early twentieth-century theory. Wolfson leads his readers on an intellectual journey that culminates in a universe made almost unimaginably rich by the principles that Einstein first discovered.

The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics


Clifford A. Pickover - 2009
    Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, it covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic gets a lavishly illustrated spread with stunning color art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.

Concepts in Thermal Physics


Stephen J. Blundell - 2006
    This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as diverse as stellar astrophysics, information and communication theory, condensed matter physics and climate change. Each chapter concludes with detailed exercises.

Unknown Quantity: A Real and Imaginary History of Algebra


John Derbyshire - 2006
    As he did so masterfully in Prime Obsession, Derbyshire brings the evolution of mathematical thinking to dramatic life by focusing on the key historical players. Unknown Quantity begins in the time of Abraham and Isaac and moves from Abel's proof to the higher levels of abstraction developed by Galois through modern-day advances. Derbyshire explains how a simple turn of thought from this plus this equals this to this plus what equals this? gave birth to a whole new way of perceiving the world. With a historian's narrative authority and a beloved teacher's clarity and passion, Derbyshire leads readers on an intellectually satisfying and pleasantly challenging historical and mathematical journey.

Fundamentals of Thermodynamics


Richard E. Sonntag - 2002
    

The Big Questions: Evolution


Francisco J. Ayala - 2012
    The Big Questions series is designed to let renowned experts address the 20 most fundamental and frequently asked questions of a major branch of science or philosophy. Each 3,000-word essay simply and concisely examines a question that has eternally perplexed enquiring minds, and provides answers based on the latest research. This ambitious project is a unique distillation of humanity's best ideas. In "The Big Questions: Evolution," Francisco Ayala answers the 20 key questions: What is evolution? Was Darwin right? What is natural selection? What is survival of the fittest? Is evolution a random process? What is a species? What are chromosomes, genes and DNA? How do genes build bodies? What is molecular evolution? How did life begin? What is the tree of life? Am I really a monkey? What does the fossil record tell us? What is the missing link? Is intelligence inherited? Will humans continue to evolve? Can I clone myself? Where does morality come from? Is language a uniquely human attribute? Is Creationism true?

Happily Ever After: My Journey with Guillain-Barr Syndrome and How I Got My Life Back


Holly Gerlach - 2012
    In less than three days, she was paralyzed and could no longer breathe on her own. She was diagnosed with Guillain-Barre syndrome, a rare autoimmune disorder that occurs when the body's immune system mistakenly attacks part of the nervous system. She was admitted to the hospital, where she spent two and a half months in the intensive care unit on a ventilator. She couldn't move, she couldn't speak, and worst of all, she couldn't hold her newborn daughter. She felt like her life was over as she couldn't be the mother that she had always wanted to be. As the weeks went on, the paralysis began to wear off. And once she was able to breathe on her own again, she started on her road to recovery. With intense physiotherapy, she learned how to use her muscles again and eventually how to walk again. She was determined, and worked hard, and after a long four months in the hospital, she was able to reach her goal of getting back to her husband and daughter. Holly Gerlach shares her inspirational story, where she faced the most terrifying and challenging experiences of her life. The book follows her entire journey, starting with the beginning symptoms, through the many months she spent in the hospital. The story continues on well past her release from the hospital, where she fought to regain her independence and eventually got her life back.

There Are No Electrons: Electronics for Earthlings


Kenn Amdahl - 1991
    Despite its title, it's not wild ranting pseudo-science to be dismissed by those with brains. Rather, Amdahl maintains that one need not understand quantum physics to grasp how electricity works in practical applications. To understand your toaster or your fax machine, it doesn't really matter whether there are electrons or not, and it's a lot easier and more fun to start with the toaster than with quarks and calculus. The book is mildly weird, often funny, always clear and easy to understand. It assumes the reader doesn't know a volt from a hole in the ground and gently leads him or her through integrated circuits, radio, oscillators and the basics of the digital revolution using examples that include green buffalo, microscopic beer parties, break-dancing chickens and naked Norwegian girls in rowboats. OK, it's more than mildly weird.The book has been reprinted numerous times since 1991 and has achieved minor cult status. Reviewed and praised in dozens of electronics and educational magazines, it is used as a text by major corporations, colleges, high schools, military schools and trade schools. It has been studied by education programs at colleges across the United States. This book was making wise cracks in the corner before anyone thought of designing books for dummies and idiots; some say it helped to inspire that industry.It may be the only "introduction to electronics books" with back cover comments by Dave Barry, Ray Bradbury, Clive Cussler, and George Garrett, as well as recomendations from Robert Hazen, Bob Mostafapour, Dr. Roger Young, Dr. Wayne Green, Scott Rundle, Brian Battles, Michelle Guido, Herb Reichert and Emil Venere. As Monitoring Times said, "Perhaps the best electronics book ever. If you'd like to learn about basic electronics but haven't been able to pull it off, get There Are No Electrons. Just trust us. Get the book."

Time Reborn: From the Crisis in Physics to the Future of the Universe


Lee Smolin - 2013
    You experience it passing every day when you watch clocks tick, bread toast, and children grow. But most physicists see things differently, from Newton to Einstein to today’s quantum theorists. For them, time isn’t real. You may think you experience time passing, but they say it’s just an illusion.Lee Smolin, author of the controversial bestseller The Trouble with Physics, argues this limited notion of time is holding physics back. It’s time for a major revolution in scientific thought. The reality of time could be the key to the next big breakthrough in theoretical physics.What if the laws of physics themselves were not timeless? What if they could evolve? Time Reborn offers a radical new approach to cosmology that embraces the reality of time and opens up a whole new universe of possibilties. There are few ideas that, like our notion of time, shape our thinking about literally everything, with major implications for physics and beyond—from climate change to the economic crisis. Smolin explains in lively and lucid prose how the true nature of time impacts our world.

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

Cosmological Koans: A Journey to the Heart of Physical Reality


Anthony Aguirre - 2019
    Through more than fifty Koans—pleasingly paradoxical vignettes following the ancient Zen tradition—leading physicist Anthony Aguirre takes the reader across the world from West to East, and through ideas spanning the age, breadth, and depth of the Universe.Using these beguiling Koans (Could there be a civilization on a mote of dust? How much of your fate have you made? Who cleans the universe?) and a flair for explaining complex science, Aguirre covers cosmic questions that scientific giants from Aristotle to Galileo to Heisenberg have grappled with, from the meaning of quantum theory and the nature of time to the origin of multiple universes.A playful and enlightening book, Cosmological Koans explores the strange hinterland between the deep structure of the physical world and our personal experience of it, giving readers what Einstein himself called “the most beautiful and deepest experience” anyone can have: a sense of the mysterious.

How to Die in Space: A Journey Through Dangerous Astrophysical Phenomena


Paul M. Sutter - 2020
    Through metaphors and straightforward language, it breathes life into astrophysics, unveiling how particles and forces and fields interplay to create the drama in the heavens above us.

Partial Differential Equations for Scientists and Engineers


Stanley J. Farlow - 1982
    Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.

E=mc²: A Biography of the World's Most Famous Equation


David Bodanis - 2000
    Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee

The Physics of Climate Change


Lawrence M. Krauss - 2021
    Here you’ll find the facts, the processes, the physics of our complex and changing climate, but delivered with eloquence and urgency. Lawrence Krauss writes with a clarity that transcends mere politics. Prose and poetry were never better bedfellows.” —Ian McEwan, Booker Prize-winning author of Solar and Machines Like Me “Lawrence Krauss has written the ideal book for anyone interested in understanding the science of global warming. It is at once elegant, rigorous, and timely.”—Elizabeth Kolbert, staff writer, The New Yorker, and Pulitzer prize-winning author of The Sixth Extinction “A brief, brilliant, and charming summary of what physicists know about climate change and how they learned it.” —Sheldon Glashow, Nobel Laureate in Physics, Metcalf Distinguished Professor Emeritus, Boston University “The distinguished scientist Lawrence Krauss turns his penetrating gaze on the most pressing existential threat facing our world: climate change. It is brimming with information lucidly analysed. Such hope as there is lies in science, and a physicist of Dr. Krauss’s imaginative versatility is unusually qualified to offer it.” —Richard Dawkins, author of The Blind Watchmaker and Science in the Soul “Lucid and gripping, this study of the most severe challenge humans have ever faced leads the reader from the basic physics of climate change to recognition of the damage that humans have already caused and on to the prospects that lie ahead if we do not change course soon.” —Noam Chomsky, Laureate Professor, University of Arizona, author of Internationalism or Extinction? “Lawrence Krauss tells the story of climate change with erudition, urgency, and passion. It is our great good luck that one of our most brilliant scientists is also such a gifted writer. This book will change the way we think about the future.” —Jennifer Finney Boylan, author of Good Boy and She’s Not There “Everything on climate change that I’ve seen is either dumbed down and bossy or written for other climate scientists. I’ve been looking for a book that can let me, a layperson, understand the science. This book does just what I was looking for. It is important.” —Penn Jillette, Magician, author of Presto! and God, No! “The renowned physicist Lawrence Krauss makes the science behind one of the most important issues of our time accessible to all.” —Richard C. J. Somerville, Distinguished Professor Emeritus, Scripps Institution of Oceanography, University of California, San Diego “Lawrence Krauss is a fine physicist, a talented writer, and a scientist deeply engaged with public affairs. His book deserves wide readership. The book’s eloquent exposition of the science and the threats should enlighten all readers and motivate them to an urgent concern about our planet’s future.” —Lord Martin Rees, Astronomer Royal, former president of the Royal Society, author of On the Future: Prospects for Humanity