An Introduction to Thermal Physics
Daniel V. Schroeder - 1999
Part I introduces concepts of thermodynamics and statistical mechanics from a unified view. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.
Explorations: Introduction to Astronomy
Thomas T. Arny - 1994
This new edition continues to offer the most complete technology/new media support package available. That technology/new media package includes: Interactives, Animations, and introducing Connect - online homework and course management.
Gravity: An Introduction to Einstein's General Relativity
James B. Hartle - 2002
Using a "physics first" approach to the subject, renowned relativist James B. Hartle provides a fluent and accessible introduction that uses a minimum of new mathematics and is illustrated with a wealth of exciting applications. KEY TOPICS: The emphasis is on the exciting phenomena of gravitational physics and the growing connection between theory and observation. The Global Positioning System, black holes, X-ray sources, pulsars, quasars, gravitational waves, the Big Bang, and the large scale structure of the universe are used to illustrate the widespread role of how general relativity describes a wealth of everyday and exotic phenomena. MARKET: For anyone interested in physics or general relativity.
Quantum Physics for Beginners in 90 Minutes without Math: All the Major Ideas of Quantum Mechanics, from Quanta to Entanglement, in Simple Language
Modern Science - 2017
This behavior is very much different from what we humans are used to dealing with in our everyday lives, so naturally this subject is quite hard to comprehend for many. We believed that the best way to introduce the subject reliably is to start at the beginning, presenting the observations, thoughts and conclusions of each of the world’s greatest physicists through their eyes, one at a time. In this way we hope that the reader may take an enjoyable journey through the strange truths of quantum theory and understand why the conclusions of these great minds are what they are. This book starts with the most general view of the world and gradually leads readers to those new, unbelievable but real facts about the very nature of our universe.
Physics Part 1 Class - 10
Lakhmir Singh
Salient Features: 1.Very short answer type questions (including true-false type questions and fill in the blanks type questions). 2.Short answer type questions. 3. Long answer type questions (or Essay type questions). 4. Multiple choice questions (MCQs) based on theory. 5. Questions based on high order thinking skills (HOTS). 6. Multiple choice questions (MCQs) based on practical skills in science.. 7. NCERT book questions and exercises (with answers). 8. Value based questions (with answers).
Superstrings And The Search For The Theory Of Everything
F. David Peat - 1988
David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.
Einstein's Miraculous Year
John J. Stachel - 1998
In those twelve months, Einstein shattered many cherished scientific beliefs with five extraordinary papers that would establish him as the world's leading physicist. This book brings those papers together in an accessible format. The best-known papers are the two that founded special relativity: On the Electrodynamics of Moving Bodies and Does the Inertia of a Body Depend on Its Energy Content? In the former, Einstein showed that absolute time had to be replaced by a new absolute: the speed of light. In the second, he asserted the equivalence of mass and energy, which would lead to the famous formula E = mc2.The book also includes On a Heuristic Point of View Concerning the Production and Transformation of Light, in which Einstein challenged the wave theory of light, suggesting that light could also be regarded as a collection of particles. This helped to open the door to a whole new world--that of quantum physics. For ideas in this paper, he won the Nobel Prize in 1921.The fourth paper also led to a Nobel Prize, although for another scientist, Jean Perrin. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat concerns the Brownian motion of such particles. With profound insight, Einstein blended ideas from kinetic theory and classical hydrodynamics to derive an equation for the mean free path of such particles as a function of the time, which Perrin confirmed experimentally. The fifth paper, A New Determination of Molecular Dimensions, was Einstein's doctoral dissertation, and remains among his most cited articles. It shows how to calculate Avogadro's number and the size of molecules.These papers, presented in a modern English translation, are essential reading for any physicist, mathematician, or astrophysicist. Far more than just a collection of scientific articles, this book presents work that is among the high points of human achievement and marks a watershed in the history of science. Coinciding with the 100th anniversary of the miraculous year, this new paperback edition includes an introduction by John Stachel, which focuses on the personal aspects of Einstein's youth that facilitated and led up to the miraculous year.
Schaum's Outline of Linear Algebra
Seymour Lipschutz - 1968
This guide provides explanations of eigenvalues, eigenvectors, linear transformations, linear equations, vectors, and matrices.
Quantum Field Theory in a Nutshell
A. Zee - 2003
A quantum field theory text for the twenty-first century, this book makes the essential tool of modern theoretical physics available to any student who has completed a course on quantum mechanics and is eager to go on.Quantum field theory was invented to deal simultaneously with special relativity and quantum mechanics, the two greatest discoveries of early twentieth-century physics, but it has become increasingly important to many areas of physics. These days, physicists turn to quantum field theory to describe a multitude of phenomena.Stressing critical ideas and insights, Zee uses numerous examples to lead students to a true conceptual understanding of quantum field theory--what it means and what it can do. He covers an unusually diverse range of topics, including various contemporary developments, while guiding readers through thoughtfully designed problems. In contrast to previous texts, Zee incorporates gravity from the outset and discusses the innovative use of quantum field theory in modern condensed matter theory.Without a solid understanding of quantum field theory, no student can claim to have mastered contemporary theoretical physics. Offering a remarkably accessible conceptual introduction, this text will be widely welcomed and used.
The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos
Brian Greene - 2011
Everything. Yet, in recent years discoveries in physics and cosmology have led a number of scientists to conclude that our universe may be one among many. With crystal-clear prose and inspired use of analogy, Brian Greene shows how a range of different “multiverse” proposals emerges from theories developed to explain the most refined observations of both subatomic particles and the dark depths of space: a multiverse in which you have an infinite number of doppelgängers, each reading this sentence in a distant universe; a multiverse comprising a vast ocean of bubble universes, of which ours is but one; a multiverse that endlessly cycles through time, or one that might be hovering millimeters away yet remains invisible; another in which every possibility allowed by quantum physics is brought to life. Or, perhaps strangest of all, a multiverse made purely of math.Greene, one of our foremost physicists and science writers, takes us on a captivating exploration of these parallel worlds and reveals how much of reality’s true nature may be deeply hidden within them. And, with his unrivaled ability to make the most challenging of material accessible and entertaining, Greene tackles the core question: How can fundamental science progress if great swaths of reality lie beyond our reach?Sparked by Greene’s trademark wit and precision, The Hidden Reality is at once a far-reaching survey of cutting-edge physics and a remarkable journey to the very edge of reality—a journey grounded firmly in science and limited only by our imagination.
Introduction to Solid State Physics
Charles Kittel - 1962
The author's goal from the beginning has been to write a book that is accessible to undergraduate and consistently teachable. The emphasis in the book has always been on physics rather than formal mathematics. With each new edition, the author has attempted to add important new developments in the field without sacrificing the book's accessibility and teachability.
The Big Questions: Tackling the Problems of Philosophy with Ideas from Mathematics, Economics and Physics
Steven E. Landsburg - 2009
Stimulating, illuminating, and always surprising, The Big Questions challenges readers to re-evaluate their most fundamental beliefs and reveals the relationship between the loftiest philosophical quests and our everyday lives.
Schaum's Outline of Differential Equations
Richard Bronson - 2006
Thoroughly updated, this edition offers new, faster techniques for solving differential equations generated by the emergence of high-speed computers.
The Ultimate Fate Of The Universe
Jamal Nazrul Islam - 1983
To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.
The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics
Clifford A. Pickover - 2009
Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, it covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic gets a lavishly illustrated spread with stunning color art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.