Mathematics: A Very Short Introduction


Timothy Gowers - 2002
    The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understandingof paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questionsabout the mathematical community (such as Is it true that mathematicians burn out at the age of 25?) It is the ideal introduction for anyone who wishes to deepen their understanding of mathematics.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundredsof key topics, from philosophy to Freud, quantum theory to Islam.

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds


Jeffrey R. Weeks - 1985
    Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.

Physics for Scientists and Engineers, Volume 2


Raymond A. Serway - 1982
    Raymond Serway, Robert Beichner, and contributing author John W. Jewett present a strong problem-solving approach that is further enhanced through increased realism in worked examples. Problem-solving strategies and hints allow students to develop a systematic approach to completing homework problems. The outstanding ancillary package includes full multimedia support, online homework, and a content-rich Web site that provides extensive support for instructors and students. The CAPA (Computer-assisted Personalized Approach), WebAssign, and University of Texas homework delivery systems give instructors flexibility in assigning online homework.

Logic: A Very Short Introduction


Graham Priest - 2000
    In this lively and accessible introduction, Graham Priest shows how wrong this conception is. He explores the philosophical roots of the subject, explaining how modern formal logic deals with issues ranging from the existence of God and the reality of time to paradoxes of probability and decision theory. Along the way, the basics of formal logic are explained in simple, non-technical terms, showing that logic is a powerful and exciting part of modern philosophy.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Calculus


Ron Larson - 1999
    It has been widely praised by a generation of users for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.

The Complete Works: The Revised Oxford Translation, Vol. 1


Aristotle
    It is universally recognized as the standard English version of Aristotle. This revised edition contains the substance of the original translation, slightly emended in light of recent scholarship; three of the original versions have been replaced by new translations; and a new and enlarged selection of Fragments has been added. The aim of the translation remains the same: to make the surviving works of Aristotle readily accessible to English speaking readers.

Math Through the Ages: A Gentle History for Teachers and Others


William P. Berlinghoff - 2002
    Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."

Introduction to Graph Theory


Douglas B. West - 1995
    Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.

Solving Mathematical Problems: A Personal Perspective


Terence Tao - 2006
    Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.

Physical Chemistry: A Molecular Approach


Donald A. McQuarrie - 1997
    It covers all relevant areas, including molecular spectroscopy, electronic structure computations, molecular beam methods and time-resolved measurements of chemical systems.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Theory and Reality: An Introduction to the Philosophy of Science


Peter Godfrey-Smith - 2003
    The result is a completely accessible introduction to the main themes of the philosophy of science. Intended for undergraduates and general readers with no prior background in philosophy, Theory and Reality covers logical positivism; the problems of induction and confirmation; Karl Popper's theory of science; Thomas Kuhn and "scientific revolutions"; the views of Imre Lakatos, Larry Laudan, and Paul Feyerabend; and challenges to the field from sociology of science, feminism, and science studies. The book then looks in more detail at some specific problems and theories, including scientific realism, the theory-ladeness of observation, scientific explanation, and Bayesianism. Finally, Godfrey-Smith defends a form of philosophical naturalism as the best way to solve the main problems in the field. Throughout the text he points out connections between philosophical debates and wider discussions about science in recent decades, such as the infamous "science wars." Examples and asides engage the beginning student; a glossary of terms explains key concepts; and suggestions for further reading are included at the end of each chapter. However, this is a textbook that doesn't feel like a textbook because it captures the historical drama of changes in how science has been conceived over the last one hundred years.Like no other text in this field, Theory and Reality combines a survey of recent history of the philosophy of science with current key debates in language that any beginning scholar or critical reader can follow.

Surreal Numbers


Donald Ervin Knuth - 1974
    This title is intended for those who might enjoy an engaging dialogue on abstract mathematical ideas, and those who might wish to experience how new mathematics is created.

On Numbers and Games


John H. Conway - 1976
    Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class, the surreal numbers, that includes both real numbers and ordinal numbers. These surreal numbers are applied in the author's mathematical analysis of game strategies. The additions to the Second Edition present recent developments in the area of mathematical game theory, with a concentration on surreal numbers and the additive theory of partizan games.