Professor Maxwell’s Duplicitous Demon: The Life and Science of James Clerk Maxwell


Brian Clegg - 2019
    But ask a physicist and there’s no doubt that James Clerk Maxwell will be near the top of the list.  Maxwell, an unassuming Victorian Scotsman, explained how we perceive colour. He uncovered the way gases behave. And, most significantly, he transformed the way physics was undertaken in his explanation of the interaction of electricity and magnetism, revealing the nature of light and laying the groundwork for everything from Einstein’s special relativity to modern electronics.   Along the way, he set up one of the most enduring challenges in physics, one that has taxed the best minds ever since. ‘Maxwell’s demon’ is a tiny but thoroughly disruptive thought experiment that suggests the second law of thermodynamics, the law that governs the flow of time itself, can be broken. This is the story of a groundbreaking scientist, a great contributor to our understanding of the way the world works, and his duplicitous demon.

Next Level Magic: A Guide to Mastering the Magic the Gathering™ Card Game


Patrick Chapin
    Next Level Magic is a comprehensive course on realizing your goals in playing Magic the Gathering.

Just Six Numbers: The Deep Forces That Shape the Universe


Martin J. Rees - 1999
    There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.

The God Equation: The Quest for a Theory of Everything


Michio Kaku - 2021
    Since then, physicists have been placing new forces into ever-grander theories. But perhaps the ultimate challenge is achieving a monumental synthesis of the two remaining theories--relativity and the quantum theory. This would be the crowning achievement of science, a profound merging of all the forces of nature into one beautiful, magnificent equation to unlock the deepest mysteries in science: What happened before the Big Bang? What lies on the other side of a black hole? Are there other universes and dimensions? Is time travel possible? Why are we here? Kaku also explains the intense controversy swirling around this theory, with Nobel laureates taking opposite sides on this vital question.

The Theory of Everything: The Origin and Fate of the Universe


Stephen Hawking - 2002
    "The Theory of Everything" presents the most complex theories, both past and present, of physics; yet it remains clear and accessible. It will enlighten readers and expose them to the rich history of scientific thought and the complexities of the universe in which we live.

Space Chronicles: Facing the Ultimate Frontier


Neil deGrasse Tyson - 2012
    After decades of global primacy, NASA has ended the space-shuttle program, cutting off its access to space. No astronauts will be launched in an American craft, from American soil, until the 2020s, and NASA may soon find itself eclipsed by other countries’ space programs.With his signature wit and thought-provoking insights, Neil deGrasse Tyson—one of our foremost thinkers on all things space—illuminates the past, present, and future of space exploration and brilliantly reminds us why NASA matters now as much as ever. As Tyson reveals, exploring the space frontier can profoundly enrich many aspects of our daily lives, from education systems and the economy to national security and morale. For America to maintain its status as a global leader and a technological innovator, he explains, we must regain our enthusiasm and curiosity about what lies beyond our world.Provocative, humorous, and wonderfully readable, Space Chronicles represents the best of Tyson’s recent commentary, including a must-read prologue on NASA and partisan politics. Reflecting on topics that range from scientific literacy to space-travel missteps, Tyson gives us an urgent, clear-eyed, and ultimately inspiring vision for the future.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

Quantum: Einstein, Bohr and the Great Debate About the Nature of Reality


Manjit Kumar - 2007
    And yet for many years it was equally baffling for scientists themselves. Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its heart.For 60 years most physicists believed that quantum theory denied the very existence of reality itself. Yet Kumar shows how the golden age of physics ignited the greatest intellectual debate of the twentieth century.Quantum sets the science in the context of the great upheavals of the modern age. In 1925 the quantum pioneers nearly all hailed from upper-middle-class academic families; most were German; and their average age was 24. But it was their irrational, romantic spirit, formed in reaction to the mechanised slaughter of the First World War that inspired their will to test science to its limits.The essential read for anyone fascinated by this complex and thrilling story and by the band of young men at its heart.

Our Mathematical Universe: My Quest for the Ultimate Nature of Reality


Max Tegmark - 2012
    Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index

The Fabric of the Cosmos: Space, Time, and the Texture of Reality


Brian Greene - 2003
    Yet they remain among the most mysterious of concepts. Is space an entity? Why does time have a direction? Could the universe exist without space and time? Can we travel to the past? Greene has set himself a daunting task: to explain non-intuitive, mathematical concepts like String Theory, the Heisenberg Uncertainty Principle, and Inflationary Cosmology with analogies drawn from common experience. From Newton’s unchanging realm in which space and time are absolute, to Einstein’s fluid conception of spacetime, to quantum mechanics’ entangled arena where vastly distant objects can instantaneously coordinate their behavior, Greene takes us all, regardless of our scientific backgrounds, on an irresistible and revelatory journey to the new layers of reality that modern physics has discovered lying just beneath the surface of our everyday world.

Dark Matter and the Dinosaurs: The Astounding Interconnectedness of the Universe


Lisa Randall - 2015
    Weaving together the cosmos' history and our own in an expanding intellectual adventure story, Dark Matter and the Dinosaurs takes us from the mysteries of dark matter and our cosmic environment to the conditions for life on Earth.Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter that is embedded in the plane of the Milky Way. Her research challenges the usual assumptions about the simple nature of dark matter and demonstrates how scientists formulate and establish new ideas. In a sense, it might have been dark matter that killed the dinosaurs.With her unique and wide-ranging perspective, Randall connects dark matter to the history of the world in the broadest terms. Bringing in pop culture and social and political viewpoints, she shares with us the latest findings—established and speculative—regarding dark matter, the cosmos, the galaxy, asteroids, comets, and impacts, as well as life's development and extinctions. Randall makes clear how connected the planet is to the makeup of the Universe, but also how fragile our place in the Universe, which evolved over billions of years, might be.In this brilliant and fresh exploration of our cosmic environment, Professor Randall explains the underlying science of our world in the breathtaking tale of a Universe in which the small and the large, the visible and the hidden are intimately related. Dark Matter and the Dinosaurs illuminates the deep relationships that are critical to our world as well as the astonishing beauty of the structures and connections that surround us. It's impossible to read this book and look at either Earth or sky again in the same way.

The Science of Interstellar


Kip S. Thorne - 2014
    Yet in The Science of Interstellar, Kip Thorne, the physicist who assisted Nolan on the scientific aspects of Interstellar, shows us that the movie’s jaw-dropping events and stunning, never-before-attempted visuals are grounded in real science. Thorne shares his experiences working as the science adviser on the film and then moves on to the science itself. In chapters on wormholes, black holes, interstellar travel, and much more, Thorne’s scientific insights—many of them triggered during the actual scripting and shooting of Interstellar—describe the physical laws that govern our universe and the truly astounding phenomena that those laws make possible.Interstellar and all related characters and elements are trademarks of and © Warner Bros. Entertainment Inc. (s14).

The Higgs Boson and Beyond


Sean Carroll - 2015
    The hunt for the Higgs was the subject of wide media attention due to the cost of the project, the complexity of the experiment, and the importance of its result. And, when it was announced with great fanfare in 2012 that physicists has succeeded in creating and identifying this all-important new particle, the discovery was celebrated around the world.And yet, virtually no one who read that news could tell you what, exactly, the Higgs boson was, and why its discovery was so important that we had to spend 10 billion dollars and build the single largest and most complex device in the history of mankind in order to find it. When you understand the details, this story ranks as one of the most thrilling in the history of modern science.Award-winning theoretical physicist Sean Carroll, a brilliant researcher as well as a gifted speaker who excels in explaining scientific concepts to the public, is perfectly positioned to tell this story. In this 12-lecture masterpiece of scientific reporting, you'll learn everything you need to know to fully grasp the significance of this discovery, including the basics of quantum mechanics; the four forces that comprise the Standard Model of particle physics; how these forces are transmitted by fields and particles; and the importance of symmetry in physics.You also get an in-depth view of the Large Hadron Collider - the largest machine ever built, and the device responsible for finally revealing the concept of the Higgs boson as reality. By the end, you'll understand how the Higgs boson verifies the final piece in the Standard Model of particle physics, and how its discovery validates and deepens our understanding of the universe.

Time Travel: A History


James Gleick - 2016
    Gleick's story begins at the turn of the twentieth century with the young H. G. Wells writing and rewriting the fantastic tale that became his first book, an international sensation, The Time Machine. A host of forces were converging to transmute the human understanding of time, some philosophical and some technological the electric telegraph, the steam railroad, the discovery of buried civilizations, and the perfection of clocks. Gleick tracks the evolution of time travel as an idea in the culture from Marcel Proust to Doctor Who, from Woody Allen to Jorge Luis Borges. He explores the inevitable looping paradoxes and examines the porous boundary between pulp fiction and modern physics. Finally, he delves into a temporal shift that is unsettling our own moment: the instantaneous wired world, with its all-consuming present and vanishing future.

Infinite Potential: What Quantum Physics Reveals About How We Should Live


Lothar Schäfer - 2013
    With his own research as well as that of some of the most distinguished scientists of our time, Schäfer moves us from a reality of Darwinian competition to cooperation, a meaningless universe to a meaningful one, and a disconnected, isolated existence to an interconnected one. In so doing, he shows us that our potential is infinite and calls us to live in accordance with the order of the universe, creating a society based on the cosmic principle of connection, emphasizing cooperation and community.