How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Calculus with Analytic Geometry


Howard Anton - 1980
    This popular student textbook has been revised and updated in order to provide clear explanations of the subject matter, permitting more classroom time to be spent in problem solving, applications or explanations of the most difficult points.

Schaum's Outline of College Physics


Frederick J. Bueche - 2006
    Provides a review of introductory noncalculus-based physics for those who do not have a strong background in mathematics.

The Complete Idiot's Guide to Statistics


Robert A. Donnelly Jr. - 2004
    Readerswill find information on frequency distributions; mean, median, and mode; range, variance, and standard deviation;probability; and more.-Emphasizes Microsoft Excel for number-crunching and computationsDownload a sample chapter.

Statistics Done Wrong: The Woefully Complete Guide


Alex Reinhart - 2013
    Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.

Introductory Statistics


Prem S. Mann - 2006
    The realistic content of its examples and exercises, the clarity and brevity of its presentation, and the soundness of its pedagogical approach have received the highest remarks from both students and instructors. Now this bestseller is available in a new 6th edition.

Physics for Scientists and Engineers, Volume 1


Raymond A. Serway - 2003
    However, rather than resting on that reputation, the new edition of this text marks a significant advance in the already excellent quality of the book. While preserving concise language, state of the art educational pedagogy, and top-notch worked examples, the Eighth Edition features a unified art design as well as streamlined and carefully reorganized problem sets that enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. Likewise, PHYSICS FOR SCIENTISTS AND ENGINEERS, will continue to accompany Enhanced WebAssign in the most integrated text-technology offering available today. In an environment where new Physics texts have appeared with challenging and novel means to teach students, this book exceeds all modern standards of education from the most solid foundation in the Physics market today.

How to Cut a Cake: And Other Mathematical Conundrums


Ian Stewart - 2006
    This is a strange world of never-ending chess games, empires on the moon, furious fireflies, and, of course, disputes over how best to cut a cake. Each chapter--with titles such as, How to Play Poker By Post and Repealing the Law of Averages--presents a fascinating mathematical puzzle that is challenging, fun, and introduces the reader to a significant mathematical problem in an engaging and witty way. Illustrated with clever and quirky cartoons, each tale will delight those who love puzzles and mathematical conundrums.

The World of Mathematics: A Four-Volume Set


James Roy Newman - 1956
    It comprises non-technical essays on every aspect of the vast subject, including articles by scores of eminent mathematicians and other thinkers.

All the Mathematics You Missed


Thomas A. Garrity - 2001
    This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.

The Haskell Road to Logic, Maths and Programming


Kees Doets - 2004
    Haskell emerged in the last decade as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvellous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures.This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others.

How to Ace Calculus: The Streetwise Guide


Colin Conrad Adams - 1998
    Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.

Elementary Number Theory and Its Applications


Kenneth H. Rosen - 1984
    The Fourth Edition builds on this strength with new examples, additional applications and increased cryptology coverage. Up-to-date information on the latest discoveries is included.Elementary Number Theory and Its Applications provides a diverse group of exercises, including basic exercises designed to help students develop skills, challenging exercises and computer projects. In addition to years of use and professor feedback, the fourth edition of this text has been thoroughly accuracy checked to ensure the quality of the mathematical content and the exercises.

Introduction to Mathematical Thinking


Keith Devlin - 2012
    This is not the same as “doing math.” The latter usually involves the application of formulas, procedures, and symbolic manipulations; mathematical thinking is a powerful way of thinking about things in the world -- logically, analytically, quantitatively, and with precision. It is not a natural way of thinking, but it can be learned. Mathematicians, scientists, and engineers need to “do math,” and it takes many years of college-level education to learn all that is required. Mathematical thinking is valuable to everyone, and can be mastered in about six weeks by anyone who has completed high school mathematics. Mathematical thinking does not have to be about mathematics at all, but parts of mathematics provide the ideal target domain to learn how to think that way, and that is the approach taken by this short but valuable book. The book is written primarily for first and second year students of science, technology, engineering, and mathematics (STEM) at colleges and universities, and for high school students intending to study a STEM subject at university. Many students encounter difficulty going from high school math to college-level mathematics. Even if they did well at math in school, most are knocked off course for a while by the shift in emphasis, from the K-12 focus on mastering procedures to the “mathematical thinking” characteristic of much university mathematics. Though the majority survive the transition, many do not. To help them make the shift, colleges and universities often have a “transition course.” This book could serve as a textbook or a supplementary source for such a course. Because of the widespread applicability of mathematical thinking, however, the book has been kept short and written in an engaging style, to make it accessible to anyone who seeks to extend and improve their analytic thinking skills. Going beyond a basic grasp of analytic thinking that everyone can benefit from, the STEM student who truly masters mathematical thinking will find that college-level mathematics goes from being confusing, frustrating, and at times seemingly impossible, to making sense and being hard but doable. Dr. Keith Devlin is a professional mathematician at Stanford University and the author of 31 previous books and over 80 research papers. His books have earned him many awards, including the Pythagoras Prize, the Carl Sagan Award, and the Joint Policy Board for Mathematics Communications Award. He is known to millions of NPR listeners as “the Math Guy” on Weekend Edition with Scott Simon. He writes a popular monthly blog “Devlin’s Angle” for the Mathematical Association of America, another blog under the name “profkeithdevlin”, and also blogs on various topics for the Huffington Post.

Introduction to Algebra


Richard Rusczyk - 2007
    Topics covered in the book include linear equations, ratios, quadratic equations, special factorizations, complex numbers, graphing linear and quadratic equations, linear and quadratic inequalities, functions, polynomials, exponents and logarithms, absolute value, sequences and series, and much more!The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, giving the student a chance to solve them without help before proceeding. The text then includes solutions to these problems, through which algebraic techniques are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains well over 1000 problems.This book can serve as a complete Algebra I course, and also includes many concepts covered in Algebra II. Middle school students preparing for MATHCOUNTS, high school students preparing for the AMC, and other students seeking to master the fundamentals of algebra will find this book an instrumental part of their mathematics libraries.656About the author: Richard Rusczyk is a co-author of Art of Problem Solving, Volumes 1 and 2, the author of Art of Problem Solving's Introduction to Geometry. He was a national MATHCOUNTS participant, a USA Math Olympiad winner, and is currently director of the USA Mathematical Talent Search.