Speed Mathematics: Secret Skills for Quick Calculation


Bill Handley - 2003
     Speed Mathematics teaches simple methods that will enable you to make lightning calculations in your head-including multiplication, division, addition, and subtraction, as well as working with fractions, squaring numbers, and extracting square and cube roots. Here's just one example of this revolutionary approach to basic mathematics: 96 x 97 = Subtract each number from 100. 96 x 97 = 4 3 Subtract diagonally. Either 96--3 or 97-- 4. The result is the first part of the answer. 96 x 97 = 93 4 3 Multiply the numbers in the circles. 4 x 3 = 12. This is the second part of the answer. 96 x 97 = 9312 4 3 It's that easy!

Fundamentals of Financial Management


Prasanna Chandra - 2012
    The book begins with an Overview section. This provides an introduction to Financial Management and to the Financial Environment. The next part covers Financial Planning and Analysis. This section explains concepts like taxes, cash flow, financial statements, and analysis of funds flow and statements. It also discusses financial planning and forecasting.The third part covers the Fundamental Valuation Concepts. This section looks at risk and return, and Securities valuation. The next two parts focus on capital structure, budgeting and dividends. These sections discuss cost of capital, capital structure, planning the capital structure, share valuation and dividend policy. The chapter on Capital budgeting also includes techniques of capital budgeting and analyzing risks in capital budgeting. Part seven goes into Long Term Financing. It covers securities market and sources of long term finance.The next part discusses Working Capital Management. It covers topics like working capital policy and financing, inventory management, and cash and credit management. The last part looks at some special topics like acquisitions, restructuring and mergers. It also discusses international finance management, and project finance, leasing and hire purchase.Fundamentals Of Financial Management provides a good coverage of the basic concepts relating to the financial environment. The topics explained include tax systems, financial institutions, banking arrangements and the regulatory framework. All the concepts are explained using numerous examples and illustrations. Besides the illustrations given within the chapter, additional concepts, tools and techniques with illustrations are provided at the end of chapter sections. The book takes an analytical approach, and explains the various analytical methods in context.

College Algebra and Trigonometry


Louis Leithold - 1984
    

The World of Mathematics: A Four-Volume Set


James Roy Newman - 1956
    It comprises non-technical essays on every aspect of the vast subject, including articles by scores of eminent mathematicians and other thinkers.

Challenge And Thrill Of Pre College Mathematics


V. Krishnamurthy - 2009
    It can urge the reader to explore new methodologies to have maximum fun with numbers, and opt for a higher course in mathematics. The book was specifically designed to help the student community, and develop a strong affinity towards problem solving.the book offers many complicated, and interesting challenges for the user, keeping them engaged throughout. A large number of solved problems are also included in challenge and thrill of pre-college mathematics, to give readers an insight into the subject. The book can be an eye-opener for school students of class 7 and above. The materials given in the book are powerful enough to help them develop a strong interest for the subject. The concepts are explained in a simple and comprehensive manner, providing them with a good understanding of mathematical fundamentals.what makes the book distinct is its detailed sections on geometry, that can improve the reasoning skills of students. There are also detailed accounts on algebra and trigonometry, enhancing the competitive ability of the users. The topics such as combinatorics, number theory, and probability are also explained in detail, in the book. Each chapter was designed with the intention of motivating students to appreciate the excitement that mathematical problems can provide. Published in 2003 by new age international publishers, the book is available in paperback. Key features: the book includes a collection of more than 300 solved numerical problems, compiled from various national, as well as international mathematical olympiads.it is widely recommended by students and teachers, alike as an essential preparatory book for those writing competitive examinations.

Everything You Need to Ace Math in One Big Fat Notebook: The Complete Middle School Study Guide


Altair Peterson - 2016
        Everything You Need to Ace Math . . . covers everything to get a student over any math hump: fractions, decimals, and how to multiply and divide them; ratios, proportions, and percentages; geometry; statistics and probability; expressions and equations; and the coordinate plane and functions. The BIG FAT NOTEBOOK™ series is built on a simple and irresistible conceit—borrowing the notes from the smartest kid in class. There are five books in all, and each is the only book you need for each main subject taught in middle school: Math, Science, American History, English Language Arts, and World History. Inside the reader will find every subject’s key concepts, easily digested and summarized: Critical ideas highlighted in neon colors. Definitions explained. Doodles that illuminate tricky concepts in marker. Mnemonics for memorable shortcuts. And quizzes to recap it all. The BIG FAT NOTEBOOKS meet Common Core State Standards, Next Generation Science Standards, and state history standards, and are vetted by National and State Teacher of the Year Award–winning teachers. They make learning fun and are the perfect next step for every kid who grew up on Brain Quest.

The Golden Ratio: The Story of Phi, the World's Most Astonishing Number


Mario Livio - 2002
    In this fascinating book, Mario Livio tells the tale of a number at the heart of that mystery: phi, or 1.6180339887...This curious mathematical relationship, widely known as "The Golden Ratio," was discovered by Euclid more than two thousand years ago because of its crucial role in the construction of the pentagram, to which magical properties had been attributed. Since then it has shown a propensity to appear in the most astonishing variety of places, from mollusk shells, sunflower florets, and rose petals to the shape of the galaxy. Psychological studies have investigated whether the Golden Ratio is the most aesthetically pleasing proportion extant, and it has been asserted that the creators of the Pyramids and the Parthenon employed it. It is believed to feature in works of art from Leonardo da Vinci's Mona Lisa to Salvador Dali's The Sacrament of the Last Supper, and poets and composers have used it in their works. It has even been found to be connected to the behavior of the stock market!The Golden Ratio is a captivating journey through art and architecture, botany and biology, physics and mathematics. It tells the human story of numerous phi-fixated individuals, including the followers of Pythagoras who believed that this proportion revealed the hand of God; astronomer Johannes Kepler, who saw phi as the greatest treasure of geometry; such Renaissance thinkers as mathematician Leonardo Fibonacci of Pisa; and such masters of the modern world as Goethe, Cezanne, Bartok, and physicist Roger Penrose. Wherever his quest for the meaning of phi takes him, Mario Livio reveals the world as a place where order, beauty, and eternal mystery will always coexist.From the Hardcover edition.

A Mind for Numbers: How to Excel at Math and Science (Even If You Flunked Algebra)


Barbara Oakley - 2014
    Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation. When she saw how her lack of mathematical and technical savvy severely limited her options—both to rise in the military and to explore other careers—she returned to school with a newfound determination to re-tool her brain to master the very subjects that had given her so much trouble throughout her entire life. In A Mind for Numbers, Dr. Oakley lets us in on the secrets to effectively learning math and science—secrets that even dedicated and successful students wish they’d known earlier. Contrary to popular belief, math requires creative, as well as analytical, thinking. Most people think that there’s only one way to do a problem, when in actuality, there are often a number of different solutions—you just need the creativity to see them. For example, there are more than three hundred different known proofs of the Pythagorean Theorem. In short, studying a problem in a laser-focused way until you reach a solution is not an effective way to learn math. Rather, it involves taking the time to step away from a problem and allow the more relaxed and creative part of the brain to take over. A Mind for Numbers shows us that we all have what it takes to excel in math, and learning it is not as painful as some might think!

Solutions Manual To Accompany Applied Mathematics And Modeling For Chemical Engineers


Richard G. Rice - 1996
    

Fourier Series


Georgi P. Tolstov - 1976
    Over 100 problems at ends of chapters. Answers in back of book. 1962 edition.

The Calculus Lifesaver: All the Tools You Need to Excel at Calculus


Adrian Banner - 2007
    The Calculus Lifesaver provides students with the essential tools they need not only to learn calculus, but to excel at it.All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of videotaped lectures. This study guide works as a supplement to any single-variable calculus course or textbook. Coupled with a selection of exercises, the book can also be used as a textbook in its own right. The style is informal, non-intimidating, and even entertaining, without sacrificing comprehensiveness. The author elaborates standard course material with scores of detailed examples that treat the reader to an inner monologue--the train of thought students should be following in order to solve the problem--providing the necessary reasoning as well as the solution. The book's emphasis is on building problem-solving skills. Examples range from easy to difficult and illustrate the in-depth presentation of theory.The Calculus Lifesaver combines ease of use and readability with the depth of content and mathematical rigor of the best calculus textbooks. It is an indispensable volume for any student seeking to master calculus.Serves as a companion to any single-variable calculus textbookInformal, entertaining, and not intimidatingInformative videos that follow the book--a full forty-eight hours of Banner's Princeton calculus-review course--is available at Adrian Banner lecturesMore than 475 examples (ranging from easy to hard) provide step-by-step reasoningTheorems and methods justified and connections made to actual practiceDifficult topics such as improper integrals and infinite series covered in detailTried and tested by students taking freshman calculus

Introduction to Linear Algebra


Gilbert Strang - 1993
    Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.

Topology


James R. Munkres - 1975
    Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

How to Study for a Mathematics Degree


Lara Alcock - 2012
    Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. Some have difficulty adjusting to independent study and to learning from lectures. Other struggles, however, are more fundamental: the mathematics shifts in focus from calculation to proof, so students are expected to interact with it in different ways. These changes need not be mysterious - mathematics education research has revealed many insights into the adjustments that are necessary - but they are not obvious and they do need explaining.This no-nonsense book translates these research-based insights into practical advice for a student audience. It covers every aspect of studying for a mathematics degree, from the most abstract intellectual challenges to the everyday business of interacting with lecturers and making good use of study time. Part 1 provides an in-depth discussion of advanced mathematical thinking, and explains how a student will need to adapt and extend their existing skills in order to develop a good understanding of undergraduate mathematics. Part 2 covers study skills as these relate to the demands of a mathematics degree. It suggests practical approaches to learning from lectures and to studying for examinations while also allowing time for a fulfilling all-round university experience.The first subject-specific guide for students, this friendly, practical text will be essential reading for anyone studying mathematics at university.