Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills


Paul J. Nahin - 2006
    Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula--long regarded as the gold standard for mathematical beauty--and shows why it still lies at the heart of complex number theory. This book is the sequel to Paul Nahin's An Imaginary Tale: The Story of I [the square root of -1], which chronicled the events leading up to the discovery of one of mathematics' most elusive numbers, the square root of minus one. Unlike the earlier book, which devoted a significant amount of space to the historical development of complex numbers, Dr. Euler begins with discussions of many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. The topics covered span a huge range, from a never-before-told tale of an encounter between the famous mathematician G. H. Hardy and the physicist Arthur Schuster, to a discussion of the theoretical basis for single-sideband AM radio, to the design of chase-and-escape problems. The book is accessible to any reader with the equivalent of the first two years of college mathematics (calculus and differential equations), and it promises to inspire new applications for years to come. Or as Nahin writes in the book's preface: To mathematicians ten thousand years hence, Euler's formula will still be beautiful and stunning and untarnished by time.

A Course in Game Theory


Martin J. Osborne - 1994
    The authors provide precise definitions and full proofs of results, sacrificing generalities and limiting the scope of the material in order to do so. The text is organized in four parts: strategic games, extensive games with perfect information, extensive games with imperfect information, and coalitional games. It includes over 100 exercises. Solution ManualTable of Contents, Errata, and more...

Speed Mathematics: Secret Skills for Quick Calculation


Bill Handley - 2003
     Speed Mathematics teaches simple methods that will enable you to make lightning calculations in your head-including multiplication, division, addition, and subtraction, as well as working with fractions, squaring numbers, and extracting square and cube roots. Here's just one example of this revolutionary approach to basic mathematics: 96 x 97 = Subtract each number from 100. 96 x 97 = 4 3 Subtract diagonally. Either 96--3 or 97-- 4. The result is the first part of the answer. 96 x 97 = 93 4 3 Multiply the numbers in the circles. 4 x 3 = 12. This is the second part of the answer. 96 x 97 = 9312 4 3 It's that easy!

Forecasting: Principles and Practice


Rob J. Hyndman - 2013
    Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

Partial Differential Equations for Scientists and Engineers


Stanley J. Farlow - 1982
    Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.

Algorithms


Sanjoy Dasgupta - 2006
    Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University

Concepts in Thermal Physics


Stephen J. Blundell - 2006
    This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as diverse as stellar astrophysics, information and communication theory, condensed matter physics and climate change. Each chapter concludes with detailed exercises.

Introduction to Operations Research [with Revised CD-ROM]


Frederick S. Hillier - 1967
    This edition also features the developments in Operations Research, such as metaheuristics, simulation, and spreadsheet modeling.

Computational Fluid Dynamics


John D. Anderson Jr. - 1995
    It can also serve as a one-semester introductory course at the beginning graduate level, as a useful precursor to a more serious study of CFD in advanced books. It is presented in a very readable, informal, enjoyable style.

Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems


Peter Dayan - 2001
    This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory.The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Medical Coding (Academic Outline - Quick Study Academic)


Shelley C. Safian - 2002
    Most commonly used medical abbreviations and acronyms.Anyone in the medical profession, from office workers to doctors themselves, will find this guide extremely useful.6-page laminated guide includes:weights & measurementspharmacologydiagnostic testingprofessional designationsmanaged careagencies/organizationshealth assessmentspecialized areas/facilitieslocations & directionsbody systems

The Humongous Book of Calculus Problems


W. Michael Kelley - 2007
    Not anymore. The best-selling author of The Complete Idiot's Guide® to Calculus has taken what appears to be a typical calculus workbook, chock full of solved calculus problems, and made legible notes in the margins, adding missing steps and simplifying solutions. Finally, everything is made perfectly clear. Students will be prepared to solve those obscure problems that were never discussed in class but always seem to find their way onto exams.--Includes 1,000 problems with comprehensive solutions--Annotated notes throughout the text clarify what's being asked in each problem and fill in missing steps--Kelley is a former award-winning calculus teacher

About Teaching Mathematics 036068


Marilyn Burns - 1977
    Containing information necessary for teachers to teach math through problem solving, this resource is filled with engaging activities from every strand of mathematics.

Numerical Analysis


Richard L. Burden - 1978
    Explaining how, why, and when the techniques can be expected to work, the Seventh Edition places an even greater emphasis on building readers' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. Applied problems from diverse areas, such as engineering and physical, computer, and biological sciences, are provided so readers can understand how numerical methods are used in real-life situations. The Seventh Edition has been updated and now addresses the evolving use of technology, incorporating it whenever appropriate.