Graph Theory With Applications To Engineering And Computer Science


Narsingh Deo - 2004
    GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1

Category Theory for Programmers


Bartosz Milewski - 2014
    Collected from the series of blog posts starting at: https://bartoszmilewski.com/2014/10/2...Hardcover available at: http://www.blurb.com/b/9008339-catego...

Fearless Symmetry: Exposing the Hidden Patterns of Numbers


Avner Ash - 2006
    But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them.Hidden symmetries were first discovered nearly two hundred years ago by French mathematician �variste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination.The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.

Calculus


Ron Larson - 1999
    It has been widely praised by a generation of users for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Partial Differential Equations


Lawrence C. Evans - 1998
    

Real Analysis


H.L. Royden - 1963
    Dealing with measure theory and Lebesque integration, this is an introductory graduate text.

Quantum Mechanics


Claude Cohen-Tannoudji - 1977
    Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

Fourier Series


Georgi P. Tolstov - 1976
    Over 100 problems at ends of chapters. Answers in back of book. 1962 edition.

Anatomy & Physiology


Boundless - 2013
    Boundless works with subject matter experts to select the best open educational resources available on the web, review the content for quality, and create introductory, college-level textbooks designed to meet the study needs of university students.<br><br>This textbook covers:<br><br><b>Human Anatomy and Physiology Introduction</b> -- Anatomy and Physiology Overview, Life, Homeostasis, Anatomical Terms, Clinical Cases<br><br><b>General Chemistry</b> -- Matter and Energy, Element Properties: Atomic structure, Chemical Bonds, Chemical Reactions, Inorganic Compounds, Organic Compounds<br><br><b>Cellular Structure and Function</b> -- the study of cells, Cell membranes and the fluid mosaic model, Transport across membranes, How reception works in cell signaling, Nucleus and Ribosomes, Organelles, The Cytoskeleton, External cellular components, Cell division: process and importance, The cell cycle, Transcription and translation, RNA processing, Translation to a polypeptide, Transcription, Apoptosis signals an orderly cell death<br><br><b>Tissues</b> -- Epithelial Tissue, Cell Junctions, Clinical Cases, Tissue Repair, Tissue Development, Cancer, Connective Tissue, Membranes, Nervous Tissue<br><br><b>The Integumentary System</b> -- The Skin, Accessory Structures of the Skin, Functions of the Integumentary System, Wound Healing, Integumentary System Development, Skin Disorders, Imbalances, Diseases, and Clinical Cases<br><br><b>Skeletal Tissue</b> -- Cartilage, Bone Classification, Bone Formation, Bone and Calcium, Bone Development, Bone Diseases, Disorders, Imbalances, and Clinical Cases<br><br><b>The Skeletal System</b> -- Overview of the Musculoskeletal system, Divisions of the Skeletal System, The Axial Skeleton, Skull, Hyoid Bone, Vertebral Column, Thorax, Clinical Cases of the Axial Skeleton, The Appendicular Skeleton, The Pectoral (Shoulder) Girdle, Upper Limb, The Pelvic (Hip) Girdle, Lower Limb, Skeletal System Development, Clinical Cases of the Appendicular Skeleton<br><br><b>Joints</b> -- Classification of Joints, Synovial Joints, Joint Development, Clinical Cases<br><br><b>Muscle Tissue</b> -- Overview of Muscle Tissue, Skeletal Muscle, Control of Muscle Tension, Muscle Metabolism, Exercise and Skeletal Muscle Tissue, Smooth Muscle, Clinical Cases: Muscle Disorders, Development of Muscle<br><br><b>The Muscular System</b> -- Overview of the Muscular System, Head And Neck Muscles, Trunk Muscles, Muscles of the Upper Limb, Muscles of the Lower Limb, Clinical Cases and Muscular System Disorders<br><br><b>Nervous Tissue</b> -- Overview of the Nervous System, Neuroglia, Neurons, Collections of Nervous Tissue, Neurophysiology<br><br><b>Central Nervous System (CNS)</b> -- The Brain, Consciousness, Sleep, Language, and Memory, Protection of the Brain, Parts of The Brain Stem, The Cerebellum, The Diencephalon, Cerebral Cortex (or Cerebral Hemispheres), Functional Systems of the Cerebral Cortex, Development of the CNS, Brain Disorders and Clinical Cases, The Spinal Cord, Spinal Cord Anatomy, Disorders and Clinical Cases of the Spinal Cord<br><br><b>Peripheral Nervous System (PNS)</b> -- Sensation, Sensory Receptors, Somatosensory System, Nerves, Cranial Nerves, Spinal Nerves, Distribution of Spinal Nerves, Motor Activity, Motor Pathways, Reflexes, Pain, Development of the Nervous System, Disorders of Spinal Nerves and Clinical Cases<br><br><b>Autonomic Nervous System (ANS)</b> -- Autonomic Nervous System, ANS Anatomy, Physiology of ANS,

Calculus [with CD]


Howard Anton - 1992
    New co-authors--Irl Bivens and Stephen Davis--from Davidson College; both distinguished educators and writers.* More emphasis on graphing calculators in exercises and examples, including CAS capabilities of graphing calculators.* More problems using tabular data and more emphasis on mathematical modeling.

Algebra


Aurelio Baldor - 1983
    This revised edition includes a CD-Rom with exercises that will help the student have a better understanding of equations, formulas, etc.

Mathematics and the Imagination


Edward Kasner - 1940
    But your pleasure and prowess at games, gambling, and other numerically related pursuits can be heightened with this entertaining volume, in which the authors offer a fascinating view of some of the lesser-known and more imaginative aspects of mathematics.A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.

The Heart of Mathematics: An Invitation to Effective Thinking


Edward B. Burger - 1999
    In this new, innovative overview textbook, the authors put special emphasis on the deep ideas of mathematics, and present the subject through lively and entertaining examples, anecdotes, challenges and illustrations, all of which are designed to excite the student's interest. The underlying ideas include topics from number theory, infinity, geometry, topology, probability and chaos theory. Throughout the text, the authors stress that mathematics is an analytical way of thinking, one that can be brought to bear on problem solving and effective thinking in any field of study.