Book picks similar to
First Steps in Differential Geometry: Riemannian, Contact, Symplectic by Andrew McInerney
mathematics
math-differential-geometry
mmath
sleeped
Measurement
Paul Lockhart - 2012
An impassioned critique of K 12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. "Measurement "offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living.In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science.Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can do the math in a way that brings emotional and aesthetic rewards. "Measurement" is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work."
Div, Grad, Curl, and All That: An Informal Text on Vector Calculus
Harry M. Schey - 1973
Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
Elementary Analysis: The Theory of Calculus
Kenneth A. Ross - 1980
It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.
Fearless Symmetry: Exposing the Hidden Patterns of Numbers
Avner Ash - 2006
But sometimes the solutions are not as interesting as the beautiful symmetric patterns that lead to them. Written in a friendly style for a general audience, Fearless Symmetry is the first popular math book to discuss these elegant and mysterious patterns and the ingenious techniques mathematicians use to uncover them.Hidden symmetries were first discovered nearly two hundred years ago by French mathematician �variste Galois. They have been used extensively in the oldest and largest branch of mathematics--number theory--for such diverse applications as acoustics, radar, and codes and ciphers. They have also been employed in the study of Fibonacci numbers and to attack well-known problems such as Fermat's Last Theorem, Pythagorean Triples, and the ever-elusive Riemann Hypothesis. Mathematicians are still devising techniques for teasing out these mysterious patterns, and their uses are limited only by the imagination.The first popular book to address representation theory and reciprocity laws, Fearless Symmetry focuses on how mathematicians solve equations and prove theorems. It discusses rules of math and why they are just as important as those in any games one might play. The book starts with basic properties of integers and permutations and reaches current research in number theory. Along the way, it takes delightful historical and philosophical digressions. Required reading for all math buffs, the book will appeal to anyone curious about popular mathematics and its myriad contributions to everyday life.
Tips on Physics: A Problem-solving Supplement to the Feynman Lectures on Physics
Richard P. Feynman - 2005
With characteristic flair, insight and humor, Feynman discusses topics students struggle with and offers valuable tips on solving physics problems. An illuminating memoir by Matthew Sands who originally conceived The Feynman Lectures on Physics gives a fascinating insight into the history of Feynman’s lecture series and the books that followed. This book is rounded off by relevant exercises and answers by R. B. Leighton and R. E. Vogt, originally developed to accompany the Lectures on Physics.
Special Relativity and Classical Field Theory: The Theoretical Minimum
Leonard Susskind - 2017
This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.
Mathematics: Its Content, Methods and Meaning
A.D. Aleksandrov - 1963
. . Nothing less than a major contribution to the scientific culture of this world." — The New York Times Book ReviewThis major survey of mathematics, featuring the work of 18 outstanding Russian mathematicians and including material on both elementary and advanced levels, encompasses 20 prime subject areas in mathematics in terms of their simple origins and their subsequent sophisticated developement. As Professor Morris Kline of New York University noted, "This unique work presents the amazing panorama of mathematics proper. It is the best answer in print to what mathematics contains both on the elementary and advanced levels."Beginning with an overview and analysis of mathematics, the first of three major divisions of the book progresses to an exploration of analytic geometry, algebra, and ordinary differential equations. The second part introduces partial differential equations, along with theories of curves and surfaces, the calculus of variations, and functions of a complex variable. It furthur examines prime numbers, the theory of probability, approximations, and the role of computers in mathematics. The theory of functions of a real variable opens the final section, followed by discussions of linear algebra and nonEuclidian geometry, topology, functional analysis, and groups and other algebraic systems.Thorough, coherent explanations of each topic are further augumented by numerous illustrative figures, and every chapter concludes with a suggested reading list. Formerly issued as a three-volume set, this mathematical masterpiece is now available in a convenient and modestly priced one-volume edition, perfect for study or reference."This is a masterful English translation of a stupendous and formidable mathematical masterpiece . . ." — Social Science
The Principles of Mathematics
Bertrand Russell - 1903
Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
Introduction to Real Analysis
Robert G. Bartle - 1982
Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.
Principles of Mathematical Analysis
Walter Rudin - 1964
The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.